
-
Previous Article
The regularity lifting methods for nonnegative solutions of Lane-Emden system
- CPAA Home
- This Issue
-
Next Article
Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity
Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs
Department of Mathematical Sciences, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, JAPAN |
In this paper, we study the existence of spiky stationary solutions of the Schnakenberg model with heterogeneity on compact metric graphs. These solutions are constructed by using the Liapunov–Schmidt reduction method and taking the same strategy as that in [
References:
[1] |
W. Ao and C. Liu,
The Schnakenberg model with precursors, Discrete Contin. Dyn. Syst., 39 (2019), 1923-1955.
doi: 10.3934/dcds.2019081. |
[2] |
J. V. Below and J. A. Lubary,
Instability of Stationary Solutions of Reaction-Diffusion-Equations on Graphs, Results. Math., 68 (2015), 171-201.
doi: 10.1007/s00025-014-0429-8. |
[3] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, in Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2013.
doi: 10.1090/surv/186. |
[4] |
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. |
[5] |
F. Camilli and L. Corrias,
Parabolic models for chemotaxis on weighted networks, J. Math. Pures Appl., 108 (2017), 459-480.
doi: 10.1016/j.matpur.2017.07.003. |
[6] |
Y. Du, B. Lou, R. Peng and M. Zhou,
The Fisher-KPP equation over simple graphs: Varied persistence states in river networks, J. Math. Biol., 80 (2020), 1559-1616.
doi: 10.1007/s00285-020-01474-1. |
[7] |
P. Exner and H. Kova${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}
\over r} }}}$ík, Quantum Waveguides, Theoretical and Mathematical Physics, Springer, Chem, 2015.
doi: 10.1007/978-3-319-18576-7. |
[8] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[9] |
D. Iron, J. Wei and M. Winter,
Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.
doi: 10.1007/s00285-003-0258-y. |
[10] |
Y. Ishii, Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity, Commun. Pure Appl. Anal., 19(6) (2020) 2965–3031.
doi: 10.3934/cpaa.2020130. |
[11] |
Y. Ishii, The effect of heterogeneity on one-peak stationary solutions to the Schnakenberg model, submitted. Google Scholar |
[12] |
Y. Ishii, Stability analysis of spike solutions to the Schnakenberg model with heterogeneity on metric graphs, submitted. Google Scholar |
[13] |
Y. Ishii, Concentration phenomena on $Y$-shaped metric graph for the Gierer-Meinhardt model with heterogeneity, Nonlinear Anal., 205 (2021), 112220.
doi: 10.1016/j.na.2020.112220. |
[14] |
Y. Ishii and K. Kurata,
Existence and stability of one-peak symmetric stationary solutions for Schnakenberg model with heterogeneity, Discrete Contin. Dyn. Syst., 39 (2019), 2807-2875.
doi: 10.3934/dcds.2019118. |
[15] |
S. Jimbo and Y. Morita,
Entire solutions to reaction-diffusion equations in multiple half-lines with a junction, J. Differ. Equ., 267 (2019), 1247-1276.
doi: 10.1016/j.jde.2019.02.008. |
[16] |
Y. Jin, R. Peng and J. Shi,
Population dynamics in river networks, J. Nonlinear Sci., 29 (2019), 2501-2545.
doi: 10.1007/s00332-019-09551-6. |
[17] |
S. Kosugi,
A semilinear elliptic equation in a thin network-shaped domain, J. Math. Soc. Jpn., 52 (2000), 673-697.
doi: 10.2969/jmsj/05230673. |
[18] |
K. Kurata and M. Shibata, Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020), 124297.
doi: 10.1016/j.jmaa.2020.124297. |
[19] |
Y. Li, F. Li and J. Shi,
Ground states of nonlinear Schrödinger equation on star metric graphs, J. Math. Anal. Appl., 459 (2018), 661-685.
doi: 10.1016/j.jmaa.2017.10.069. |
[20] |
J. Schnakenberg,
Simple chemical reaction system with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[21] |
E. Yanagida,
Stability of nonconstant steady states in reaction-diffusion systems on graphs, Japan J. Indust. Appl. Math., 18 (2001), 25-42.
doi: 10.1007/BF03167353. |
[22] |
M. J. Ward and J. Wei,
The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.
doi: 10.1111/1467-9590.00223. |
[23] |
J. Wei and M. Winter,
On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.
doi: 10.3934/dcds.2009.25.363. |
[24] |
J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Springer, London, 2014.
doi: 10.1007/978-1-4471-5526-3. |
[25] |
J. Wei and M. Winter,
Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28 (2017), 576-635.
doi: 10.1017/S0956792516000450. |
show all references
References:
[1] |
W. Ao and C. Liu,
The Schnakenberg model with precursors, Discrete Contin. Dyn. Syst., 39 (2019), 1923-1955.
doi: 10.3934/dcds.2019081. |
[2] |
J. V. Below and J. A. Lubary,
Instability of Stationary Solutions of Reaction-Diffusion-Equations on Graphs, Results. Math., 68 (2015), 171-201.
doi: 10.1007/s00025-014-0429-8. |
[3] |
G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, in Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2013.
doi: 10.1090/surv/186. |
[4] |
H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. |
[5] |
F. Camilli and L. Corrias,
Parabolic models for chemotaxis on weighted networks, J. Math. Pures Appl., 108 (2017), 459-480.
doi: 10.1016/j.matpur.2017.07.003. |
[6] |
Y. Du, B. Lou, R. Peng and M. Zhou,
The Fisher-KPP equation over simple graphs: Varied persistence states in river networks, J. Math. Biol., 80 (2020), 1559-1616.
doi: 10.1007/s00285-020-01474-1. |
[7] |
P. Exner and H. Kova${{\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}}
\over r} }}}$ík, Quantum Waveguides, Theoretical and Mathematical Physics, Springer, Chem, 2015.
doi: 10.1007/978-3-319-18576-7. |
[8] |
A. Gierer and H. Meinhardt,
A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39.
doi: 10.1007/BF00289234. |
[9] |
D. Iron, J. Wei and M. Winter,
Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 358-390.
doi: 10.1007/s00285-003-0258-y. |
[10] |
Y. Ishii, Stability of multi-peak symmetric stationary solutions for the Schnakenberg model with periodic heterogeneity, Commun. Pure Appl. Anal., 19(6) (2020) 2965–3031.
doi: 10.3934/cpaa.2020130. |
[11] |
Y. Ishii, The effect of heterogeneity on one-peak stationary solutions to the Schnakenberg model, submitted. Google Scholar |
[12] |
Y. Ishii, Stability analysis of spike solutions to the Schnakenberg model with heterogeneity on metric graphs, submitted. Google Scholar |
[13] |
Y. Ishii, Concentration phenomena on $Y$-shaped metric graph for the Gierer-Meinhardt model with heterogeneity, Nonlinear Anal., 205 (2021), 112220.
doi: 10.1016/j.na.2020.112220. |
[14] |
Y. Ishii and K. Kurata,
Existence and stability of one-peak symmetric stationary solutions for Schnakenberg model with heterogeneity, Discrete Contin. Dyn. Syst., 39 (2019), 2807-2875.
doi: 10.3934/dcds.2019118. |
[15] |
S. Jimbo and Y. Morita,
Entire solutions to reaction-diffusion equations in multiple half-lines with a junction, J. Differ. Equ., 267 (2019), 1247-1276.
doi: 10.1016/j.jde.2019.02.008. |
[16] |
Y. Jin, R. Peng and J. Shi,
Population dynamics in river networks, J. Nonlinear Sci., 29 (2019), 2501-2545.
doi: 10.1007/s00332-019-09551-6. |
[17] |
S. Kosugi,
A semilinear elliptic equation in a thin network-shaped domain, J. Math. Soc. Jpn., 52 (2000), 673-697.
doi: 10.2969/jmsj/05230673. |
[18] |
K. Kurata and M. Shibata, Least energy solutions to semi-linear elliptic problems on metric graphs, J. Math. Anal. Appl., 491 (2020), 124297.
doi: 10.1016/j.jmaa.2020.124297. |
[19] |
Y. Li, F. Li and J. Shi,
Ground states of nonlinear Schrödinger equation on star metric graphs, J. Math. Anal. Appl., 459 (2018), 661-685.
doi: 10.1016/j.jmaa.2017.10.069. |
[20] |
J. Schnakenberg,
Simple chemical reaction system with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389-400.
doi: 10.1016/0022-5193(79)90042-0. |
[21] |
E. Yanagida,
Stability of nonconstant steady states in reaction-diffusion systems on graphs, Japan J. Indust. Appl. Math., 18 (2001), 25-42.
doi: 10.1007/BF03167353. |
[22] |
M. J. Ward and J. Wei,
The existence and stability of asymmetric spike patterns for the Schnakenberg model, Stud. Appl. Math., 109 (2002), 229-264.
doi: 10.1111/1467-9590.00223. |
[23] |
J. Wei and M. Winter,
On the Gierer-Meinhardt system with precursors, Discrete Contin. Dyn. Syst., 25 (2009), 363-398.
doi: 10.3934/dcds.2009.25.363. |
[24] |
J. Wei and M. Winter, Mathematical Aspects of Pattern Formation in Biological Systems, Springer, London, 2014.
doi: 10.1007/978-1-4471-5526-3. |
[25] |
J. Wei and M. Winter,
Stable spike clusters for the one-dimensional Gierer-Meinhardt system, Eur. J. Appl. Math., 28 (2017), 576-635.
doi: 10.1017/S0956792516000450. |









[1] |
Guanqi Liu, Yuwen Wang. Pattern formation of a coupled two-cell Schnakenberg model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1051-1062. doi: 10.3934/dcdss.2017056 |
[2] |
Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 |
[3] |
Peter Rashkov. Remarks on pattern formation in a model for hair follicle spacing. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1555-1572. doi: 10.3934/dcdsb.2015.20.1555 |
[4] |
Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217 |
[5] |
Evan C. Haskell, Jonathan Bell. Pattern formation in a predator-mediated coexistence model with prey-taxis. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 2895-2921. doi: 10.3934/dcdsb.2020045 |
[6] |
R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339 |
[7] |
Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 |
[8] |
Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783 |
[9] |
Weiwei Ao, Chao Liu. The Schnakenberg model with precursors. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1923-1955. doi: 10.3934/dcds.2019081 |
[10] |
Wonlyul Ko, Inkyung Ahn. Pattern formation of a diffusive eco-epidemiological model with predator-prey interaction. Communications on Pure & Applied Analysis, 2018, 17 (2) : 375-389. doi: 10.3934/cpaa.2018021 |
[11] |
Xiaoying Wang, Xingfu Zou. Pattern formation of a predator-prey model with the cost of anti-predator behaviors. Mathematical Biosciences & Engineering, 2018, 15 (3) : 775-805. doi: 10.3934/mbe.2018035 |
[12] |
Roy H. Goodman. NLS bifurcations on the bowtie combinatorial graph and the dumbbell metric graph. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2203-2232. doi: 10.3934/dcds.2019093 |
[13] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[14] |
Julien Barré, Pierre Degond, Diane Peurichard, Ewelina Zatorska. Modelling pattern formation through differential repulsion. Networks & Heterogeneous Media, 2020, 15 (3) : 307-352. doi: 10.3934/nhm.2020021 |
[15] |
Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 |
[16] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[17] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021010 |
[18] |
Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 |
[19] |
Taylan Sengul, Shouhong Wang. Pattern formation and dynamic transition for magnetohydrodynamic convection. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2609-2639. doi: 10.3934/cpaa.2014.13.2609 |
[20] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]