In this paper, we consider the KdV-type limit for ion dynamics system. Under the Gardner-Morikawa type transforms, we derive the KdV-type equation by the scaling $ \varepsilon^{\frac{1}{4}}(x-t) \rightarrow X $, $ \varepsilon^{\frac{3}{4}}t\rightarrow T $ for ion dynamics system in one dimension. By proving the uniform estimates for the remainders system, we show that when $ \varepsilon \rightarrow 0 $, the solutions to the ion dynamics system converge globally in time to the solutions of the KdV-type equation.
Citation: |
[1] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Sharp global well-posedness for KdV and modifified KdV on R and T, J. Amer. Math. Soci., 16 (2003), 705-749.
doi: 10.1090/S0894-0347-03-00421-1.![]() ![]() ![]() |
[2] |
H. K. Daniel, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Commun. Math. Phys., 324 (2012), 961-993.
doi: 10.1007/s00220-013-1825-8.![]() ![]() ![]() |
[3] |
R. Fedele, Envelope solitons versus solitons, Phys. Scripta, 65 (2002), 502-508.
![]() |
[4] |
Z. T. Fu, Z. Chen and S. K. Liu, New solutions to generalized mKdV equation, Commun. Theor. Phys., 41 (2004), 25-28.
doi: 10.1088/0253-6102/41/1/25.![]() ![]() ![]() |
[5] |
Z. T. Fu, S. K. Liu and S. D. Liu, A new approach to solve nonlinear wave equations, Commun. Theor. Phys., 39 (2003), 27-30.
doi: 10.1088/0253-6102/39/1/27.![]() ![]() ![]() |
[6] |
C. S. Gardner and G. M. Morikawa, Similarity in the asymptotic behaviour of collision-free hydromagnetic wave and water waves, New York Univ., Courant Inst. Math. Soci., Res. Rept., NYO-9082, (1960).
![]() |
[7] |
Z. Guo, Global well-posedness of Korteweg-de Vries equation in $H^{-3/4}(R)$, J. Math. Pures Appl., 91 (2009), 583-597.
doi: 10.1016/j.matpur.2009.01.012.![]() ![]() ![]() |
[8] |
Y. Guo and B. Pausader, Global smooth ion dynamics in the Euler-Poisson system, Commun. Math. Phys., 303 (2011), 89-125.
doi: 10.1007/s00220-011-1193-1.![]() ![]() ![]() |
[9] |
Y. Guo and X. Pu, KdV limit of the Euler-Poisson system, Arch. Ration. Mech. Anal., 211 (2014), 673-710.
doi: 10.1007/s00205-013-0683-z.![]() ![]() ![]() |
[10] |
E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos, Cambridge Univ. Press, Cambridge, 1990.
![]() ![]() |
[11] |
C. E. Kenig, G. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J., 59 (1989), 585-610.
doi: 10.1215/S0012-7094-89-05927-9.![]() ![]() ![]() |
[12] |
C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
[13] |
D. Lannes, F. Linares and J. C. saut, The cauchy problem for the Euler poisson system and derivation of the Zakharov-Kuznetsov equation, Nonlinear Differ. Equ. Appl., 84 (2003), 181-213.
doi: 10.1007/978-1-4614-6348-1_10.![]() ![]() ![]() |
[14] |
F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, Universitext. Springer, New York, 2009.
![]() ![]() |
[15] |
S. Y. Lou and H. Y. Ruan, Infinite conservation laws for KdV equation and mKdV equation with variable coefficients, J. Phy. Sci., 02 (1992), 8-13.
![]() |
[16] |
X. Pu, Dispersive limit of the Euler-Poisson system in higher dimensions, SIAM J. Math. Anal., 45 (2013), 834-878.
doi: 10.1137/120875648.![]() ![]() ![]() |
[17] |
P. Rosenau and J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett. vol., 70 (1993), 564-567.
doi: 10.1016/0375-9601(95)00933-7.![]() ![]() ![]() |
[18] |
H. Schamel, A modified Korteweg-de Vries equation for ion acoustic waves due to resonant electrons, J. Plasma Phys., 9 (1973), 377-387.
![]() |
[19] |
Ta ogetusang and Si rendaoreji, New exact solitary wave solutions to generalized mKdV equation and generalized Zakharov-Kuzentsov equation, Chin. phy. B, 015 (2006), 1143-1148.
![]() ![]() |
[20] |
V. E. Zakharov and E. A. Kuznetzov, On three dimensional solitons, Sov. Phys. JETP, 39 (1974), 285-286.
![]() |