doi: 10.3934/cpaa.2021039

Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems

1. 

Dip. di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, and RISM – Riemann International School of Mathematics, Villa Toeplitz, Via G.B. Vico, 46 – 21100 Varese, Italy

2. 

College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China

* Corresponding author

Received  July 2020 Revised  January 2021 Published  March 2021

Fund Project: The third named author was supported by NSFC(No.11871123)

We consider in
$ \mathbb R^3 $
the singularly perturbed Schrödinger-Poisson system
$ \begin{equation*} \begin{cases} - \varepsilon^2\Delta v+V(x)v+\phi(x)v = f(v)\\ - \Delta\phi = v^2 . \end{cases} \end{equation*} $
Using variational techniques, we construct solutions which concentrate around the saddle points of the external potential
$ V $
, as
$ \varepsilon \rightarrow 0 $
.
Citation: Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021039
References:
[1]

P. BechoucheN. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal, Commun. Pure Appl. Math., 54 (2001), 851-890.  doi: 10.1002/cpa.3004.  Google Scholar

[2]

D. Bonheure, J. Di Cosmo and C. Mercuri, Concentration on circles for nonlinear Schrödinger-Poisson systems with unbounded potentials vanishing at infinity, Commun. Contemp. Math., 14 (2012), 31 pp. doi: 10.1142/S0219199712500095.  Google Scholar

[3]

H. Brezis and T. Kato, Remarks on the Schrödinger operator with singularly complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.   Google Scholar

[4]

J. ByeonJ. J. Zhang and W. M. Zou, Singularly perturbed nonlinear Dirichlet problems involving critical growth, Calc. Var. Partial Differ. Equ., 47 (2013), 65-85.  doi: 10.1007/s00526-012-0511-6.  Google Scholar

[5]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer 2014. Google Scholar

[6]

S. ChenA. FiscellaP. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 268 (2020), 2672-2716.  doi: 10.1016/j.jde.2019.09.041.  Google Scholar

[7]

P. L. Cunha, Existence and concentration of positive bound states for Schrödinger-Poisson systems with potential functions, Electron. J. Differ. Equ., (2015), 15 pp.  Google Scholar

[8]

P. d'AveniaA. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009.  Google Scholar

[9]

M. J. Esteban and P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982/1983), 1-14.  doi: 10.1017/S0308210500031607.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren 224, Springer, Berlin Heidelberg, New York and Tokyo, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[11]

I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 19 (2009), 877-910.  doi: 10.1142/S0218202509003656.  Google Scholar

[12]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar

[13]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $ \mathbb R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[14]

X. Liu and J. Zhao, $p$-Laplacian Equations in $ \mathbb R^N$ with finite potential via the truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[15]

A. MaoL. YangA. Qian and S. Luan, Existence and concentration of solutions of Schr${\rm{\ddot d}}$inger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar

[16]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005), 141-164.  doi: 10.1142/S0218202505003939.  Google Scholar

[17]

M. A. S. Souto, On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth, Abstr. Appl. Anal., 7 (2002), 547-561.  doi: 10.1155/S1085337502206028.  Google Scholar

[18]

K. Teng and P. R. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar

[19]

J. WangL. TianJ. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $ \mathbb R^3$, Calc. Var. Partial Differ. Equ., 48 (2013), 243-273.  doi: 10.1007/s00526-012-0548-6.  Google Scholar

[20]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[21]

M. YangZ. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system, Nonlinear Anal., 71 (2009), 730-739.  doi: 10.1016/j.na.2008.10.105.  Google Scholar

[22]

Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differ. Equ., 56 (2017), 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar

[23]

H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar

[24]

J. Zhang, The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55 (2014), 14 pp. doi: 10.1063/1.4868617.  Google Scholar

[25]

H. Zhu, Semi-classical states for Schrödinger-Poisson systems on $ \mathbb R^3$, Electron. J. Differ. Equ., (2016), 15 pp.  Google Scholar

show all references

References:
[1]

P. BechoucheN. J. Mauser and F. Poupaud, Semiclassical limit for the Schrödinger-Poisson equation in a crystal, Commun. Pure Appl. Math., 54 (2001), 851-890.  doi: 10.1002/cpa.3004.  Google Scholar

[2]

D. Bonheure, J. Di Cosmo and C. Mercuri, Concentration on circles for nonlinear Schrödinger-Poisson systems with unbounded potentials vanishing at infinity, Commun. Contemp. Math., 14 (2012), 31 pp. doi: 10.1142/S0219199712500095.  Google Scholar

[3]

H. Brezis and T. Kato, Remarks on the Schrödinger operator with singularly complex potentials, J. Math. Pures Appl., 58 (1979), 137-151.   Google Scholar

[4]

J. ByeonJ. J. Zhang and W. M. Zou, Singularly perturbed nonlinear Dirichlet problems involving critical growth, Calc. Var. Partial Differ. Equ., 47 (2013), 65-85.  doi: 10.1007/s00526-012-0511-6.  Google Scholar

[5]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer 2014. Google Scholar

[6]

S. ChenA. FiscellaP. Pucci and X. Tang, Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations, J. Differ. Equ., 268 (2020), 2672-2716.  doi: 10.1016/j.jde.2019.09.041.  Google Scholar

[7]

P. L. Cunha, Existence and concentration of positive bound states for Schrödinger-Poisson systems with potential functions, Electron. J. Differ. Equ., (2015), 15 pp.  Google Scholar

[8]

P. d'AveniaA. Pomponio and D. Ruiz, Semiclassical states for the nonlinear Schrödinger equation on saddle points of the potential via variational methods, J. Funct. Anal., 262 (2012), 4600-4633.  doi: 10.1016/j.jfa.2012.03.009.  Google Scholar

[9]

M. J. Esteban and P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A, 93 (1982/1983), 1-14.  doi: 10.1017/S0308210500031607.  Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren 224, Springer, Berlin Heidelberg, New York and Tokyo, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[11]

I. Ianni, Solutions of the Schrödinger-Poisson problem concentrating on spheres. II. Existence, Math. Models Methods Appl. Sci., 19 (2009), 877-910.  doi: 10.1142/S0218202509003656.  Google Scholar

[12]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar

[13]

L. Jeanjean and K. Tanaka, A remark on least energy solutions in $ \mathbb R^N$, Proc. Amer. Math. Soc., 131 (2003), 2399-2408.  doi: 10.1090/S0002-9939-02-06821-1.  Google Scholar

[14]

X. Liu and J. Zhao, $p$-Laplacian Equations in $ \mathbb R^N$ with finite potential via the truncation method, Adv. Nonlinear Stud., 17 (2017), 595-610.  doi: 10.1515/ans-2015-5059.  Google Scholar

[15]

A. MaoL. YangA. Qian and S. Luan, Existence and concentration of solutions of Schr${\rm{\ddot d}}$inger-Poisson system, Appl. Math. Lett., 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar

[16]

D. Ruiz, Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci., 15 (2005), 141-164.  doi: 10.1142/S0218202505003939.  Google Scholar

[17]

M. A. S. Souto, On the location of the peaks of least-energy solutions to semilinear Dirichlet problems with critical growth, Abstr. Appl. Anal., 7 (2002), 547-561.  doi: 10.1155/S1085337502206028.  Google Scholar

[18]

K. Teng and P. R. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar

[19]

J. WangL. TianJ. Xu and F. Zhang, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $ \mathbb R^3$, Calc. Var. Partial Differ. Equ., 48 (2013), 243-273.  doi: 10.1007/s00526-012-0548-6.  Google Scholar

[20]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[21]

M. YangZ. Shen and Y. Ding, Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system, Nonlinear Anal., 71 (2009), 730-739.  doi: 10.1016/j.na.2008.10.105.  Google Scholar

[22]

Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differ. Equ., 56 (2017), 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar

[23]

H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar

[24]

J. Zhang, The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55 (2014), 14 pp. doi: 10.1063/1.4868617.  Google Scholar

[25]

H. Zhu, Semi-classical states for Schrödinger-Poisson systems on $ \mathbb R^3$, Electron. J. Differ. Equ., (2016), 15 pp.  Google Scholar

[1]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[2]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[3]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[4]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[5]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[6]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[7]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[8]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[10]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[11]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[12]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[13]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[14]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[16]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[17]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[18]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[19]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[20]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392

2019 Impact Factor: 1.105

Article outline

[Back to Top]