\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Homogenization of a modified bidomain model involving imperfect transmission

  • * Corresponding author

    * Corresponding author 
The first author is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The second author is member of the Gruppo Nazionale per la Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM)
Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • We study, by means of the periodic unfolding technique, the homogenization of a modified bidomain model, which describes the propagation of the action potential in the cardiac electrophysiology. Such a model, allowing the presence of pathological zones in the heart, involves various geometries and non-standard transmission conditions on the interface between the healthy and the damaged part of the cardiac muscle.

    Mathematics Subject Classification: Primary: 35B27; Secondary: 35Q92, 35K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  ${Left}$: the periodic cell $ Y $. $ E^{ \rm{D}} $ is the shaded region and $ E^{ \rm{B}} $ is the white region.${Right}$: the region $ \varOmega $

    Figure 2.  The periodic cell $ Y $. $ E^{ \rm{D}} $ is the shaded region and $ E^{ \rm{B}} $ is the white region

  • [1] E. AcerbiV. Chiadò PiatG. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481-496.  doi: 10.1016/0362-546X(92)90015-7.
    [2] M. AmarD. Andreucci and D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Anal. Theory Methods Appl., 153 (2017), 56-77.  doi: 10.1016/j.na.2016.05.018.
    [3] M. AmarD. Andreucci and D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700.  doi: 10.4171/RLM/781.
    [4] M. AmarD. AndreucciP. Bisegna and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Models Methods Appl. Sci, 14 (2004), 1261-1295.  doi: 10.1142/S0218202504003623.
    [5] M. AmarD. AndreucciP. Bisegna and R. Gianni, Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics, Nonlinear Anal. Real World Appl., 6 (2005), 367-380.  doi: 10.1016/j.nonrwa.2004.09.002.
    [6] M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Math. Methods Appl. Sci., 29 (2006), 767-787.  doi: 10.1002/mma.709.
    [7] M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differ. Integral Equ., 26 (2013), 885-912. 
    [8] M. Amar, D. Andreucci, R. Gianni and C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, Calc. Var., 59: 99 (2020). doi: 10.1007/s00526-020-01749-x.
    [9] M. Amar, D. Andreucci and C. Timofte, Well-posedness for a modified bidomain model describing bioelectric activity in damaged heart tissue, preprint, arXiv: 2101.09285.
    [10] M. Amar, I. De Bonis and G. Riey, Homogenization of elliptic problems involving interfaces and singular data, Nonlinear Anal., 189 (2019), 111562. Corrigendum to Homogenization of elliptic problems involving interfaces and singular data. Nonlinear Analysis 203 (2021), 112192. doi: 10.1016/j.na.2020.112192.
    [11] M. Amar and R. Gianni, Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices, Discrete Contin. Dyn. Systems - B, (4)23 (2018), 1739-1756.  doi: 10.3934/dcdsb.2018078.
    [12] M. Bendahmane and H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218.  doi: 10.3934/nhm.2006.1.185.
    [13] M. Boulakia, Etude mathématique et numérique de modèles issus du domaine biomédical, Equations aux dérivées partielles, UPMC, 2015.
    [14] M. BoulakiaS. CazeauM. A. FernándezJ. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study, Ann. Biomed. Eng., 38 (2010), 1071-1097. 
    [15] M. Boulakia, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms, in Functional Imaging and Modeling of the Heart. FIMH 2007. In Lecture Notes in Computer Science (eds. F. Sachse and G. Seemann), Springer, Berlin, 2007, 240–249.
    [16] Y. BourgaultY. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., (1) (2009), 458-482.  doi: 10.1016/j.nonrwa.2007.10.007.
    [17] D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math Anal., 44 (2012), 718-760.  doi: 10.1137/100817942.
    [18] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method. Theory and Applications to Partial Differential Problems, Springer, Singapore, 2018. doi: 10.1007/978-981-13-3032-2.
    [19] D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.  doi: 10.1016/0022-247X(79)90211-7.
    [20] A. Collin and S. Imperiale, Mathematical analysis and $2$-scale convergence of an heterogeneous microscopic bidomain model, Math. Models Meth. Appl. Sci., 28 (2018), 979-1035.  doi: 10.1142/S0218202518500264.
    [21] Y. Coudière, A. Davidovic and C. Poignard, Modified bidomain model with passive periodic heterogeneities, Discrete Contin. Dyn. Systems-S, 13 (2020), 2231-2258. doi: 10.3934/dcdss.2020126.
    [22] A. Davidovi$\grave{\rm c}$, Multiscale Mathematical Modelling of Structural Heterogeneities in Cardiac Electrophysiology, General Mathematics, Universitè de Bordeaux, 2016.
    [23] P. Donato and K. Le Nguyen, Homogenization for diffusion problems with a nonlinear interfacial resistance, Nonlinear Differ. Equ. Appl., 22 (2015), 1345-1380.  doi: 10.1007/s00030-015-0325-2.
    [24] A. Gaudiello and M. Lenczner, A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode, Siam J. Appl. Math., 80 (2020), 792-813.  doi: 10.1137/19M1270306.
    [25] P. GoelJ. Sneyd and A. Friedman, Homogenization of the cell cytoplasm: The calcium bidomain equations, Multiscale Model. Simul., 5 (2006), 1045-1062.  doi: 10.1137/060660783.
    [26] I. Graf and M. Peter, Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal., 46 (2014), 3025-3049.  doi: 10.1137/130921015.
    [27] I. GrafM. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells, J. Math. Anal. Appl., 419 (2014), 28-47.  doi: 10.1016/j.jmaa.2014.04.037.
    [28] E. Grandelius and K. Karlsen, The cardiac bidomain model and homogenization, Netw. Heterog. Media, 14 (2019), 173-204.  doi: 10.3934/nhm.2019009.
    [29] E. HigginsP. GoelJ. PuglisiD. BersM. Cannell and J. Sneyd, Modelling calcium microdomains using homogenisation, J. Theor. Biol., 247 (2007), 623-644.  doi: 10.1016/j.jtbi.2007.03.019.
    [30] M. Höpker, Extension operators for Sobolev spaces on periodic domains, their applications, and homogenization of a phase field model for phase transitions in porous media, Ph. D. Thesis, Universit$\ddot{a}$t Bremen, 2016.
    [31] C. Jerez-HanckesI. Pettersson and V. Rybalko, Derivation of cable equation by multiscale analysis for a model of myelinated axons, Discrete Contin. Dyn. Systems-B, 25 (2020), 815-839.  doi: 10.3934/dcdsb.2019191.
    [32] N. Kajiwara, On the bidomain equations as parabolic evolution equations, Preprint, available from https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/251618/1/2090-02.pdf.
    [33] J. Keener and J. Sneyd, Mathematical Physiology, Springer, 2004.
    [34] W. Krassowska and J. Neu, Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21 (1992), 137-199. 
    [35] K. Le Nguyen, Homogenization of heat transfer process in composite materials, J. Elliptic Parabol. Equ., 1 (2015), 175-188.  doi: 10.1007/BF03377374.
    [36] M. Mabrouk and S. Hassan, Homogenization of a composite medium with a thermal barrier, Math. Meth. Appl. Sci., 27 (2004), 405-425.  doi: 10.1002/mma.460.
    [37] J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. Institute of Radio Engineers, 50 (1962), 2061-2070. 
    [38] M. PennacchioG. Savaré and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM J. Math. Anal., 37 (2005), 1333-1370.  doi: 10.1137/040615249.
    [39] L. Tartar, Problèmes d'homogénéisation dans les équations aux dérivées partielles, in Cours Peccot Collège de France, 1977, partiellement rédigé (ed. H.-c. S. d. F. e. N. dans: F. Murat ed.), Université d’Alger (polycopié), 1977/78.
    [40] C. Timofte, Homogenization results for the calcium dynamics in living cells, Math. Comput. Simul., 133 (2017), 165-174.  doi: 10.1016/j.matcom.2015.06.011.
    [41] M. Veneroni, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. Methods Appl. Sci., 29 (2006) 1631–1661. doi: 10.1002/mma.740.
    [42] M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10 (2009), 849-868.  doi: 10.1016/j.nonrwa.2007.11.008.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(348) PDF downloads(203) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return