doi: 10.3934/cpaa.2021040

Homogenization of a modified bidomain model involving imperfect transmission

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza - Università di Roma, Via A. Scarpa 16, 00161 Roma, Italy

2. 

University of Bucharest, Faculty of Physics, 405, Atomistilor, 077125 Bucharest-Magurele, Romania

* Corresponding author

Received  September 2020 Revised  January 2021 Published  March 2021

Fund Project: The first author is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The second author is member of the Gruppo Nazionale per la Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM)

We study, by means of the periodic unfolding technique, the homogenization of a modified bidomain model, which describes the propagation of the action potential in the cardiac electrophysiology. Such a model, allowing the presence of pathological zones in the heart, involves various geometries and non-standard transmission conditions on the interface between the healthy and the damaged part of the cardiac muscle.

Citation: Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021040
References:
[1]

E. AcerbiV. Chiadò PiatG. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481-496.  doi: 10.1016/0362-546X(92)90015-7.  Google Scholar

[2]

M. AmarD. Andreucci and D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Anal. Theory Methods Appl., 153 (2017), 56-77.  doi: 10.1016/j.na.2016.05.018.  Google Scholar

[3]

M. AmarD. Andreucci and D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700.  doi: 10.4171/RLM/781.  Google Scholar

[4]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Models Methods Appl. Sci, 14 (2004), 1261-1295.  doi: 10.1142/S0218202504003623.  Google Scholar

[5]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics, Nonlinear Anal. Real World Appl., 6 (2005), 367-380.  doi: 10.1016/j.nonrwa.2004.09.002.  Google Scholar

[6]

M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Math. Methods Appl. Sci., 29 (2006), 767-787.  doi: 10.1002/mma.709.  Google Scholar

[7]

M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differ. Integral Equ., 26 (2013), 885-912.   Google Scholar

[8]

M. Amar, D. Andreucci, R. Gianni and C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, Calc. Var., 59: 99 (2020). doi: 10.1007/s00526-020-01749-x.  Google Scholar

[9]

M. Amar, D. Andreucci and C. Timofte, Well-posedness for a modified bidomain model describing bioelectric activity in damaged heart tissue, preprint, arXiv: 2101.09285. Google Scholar

[10]

M. Amar, I. De Bonis and G. Riey, Homogenization of elliptic problems involving interfaces and singular data, Nonlinear Anal., 189 (2019), 111562. Corrigendum to Homogenization of elliptic problems involving interfaces and singular data. Nonlinear Analysis 203 (2021), 112192. doi: 10.1016/j.na.2020.112192.  Google Scholar

[11]

M. Amar and R. Gianni, Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices, Discrete Contin. Dyn. Systems - B, (4)23 (2018), 1739-1756.  doi: 10.3934/dcdsb.2018078.  Google Scholar

[12]

M. Bendahmane and H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218.  doi: 10.3934/nhm.2006.1.185.  Google Scholar

[13]

M. Boulakia, Etude mathématique et numérique de modèles issus du domaine biomédical, Equations aux dérivées partielles, UPMC, 2015. Google Scholar

[14]

M. BoulakiaS. CazeauM. A. FernándezJ. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study, Ann. Biomed. Eng., 38 (2010), 1071-1097.   Google Scholar

[15]

M. Boulakia, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms, in Functional Imaging and Modeling of the Heart. FIMH 2007. In Lecture Notes in Computer Science (eds. F. Sachse and G. Seemann), Springer, Berlin, 2007, 240–249. Google Scholar

[16]

Y. BourgaultY. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., (1) (2009), 458-482.  doi: 10.1016/j.nonrwa.2007.10.007.  Google Scholar

[17]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math Anal., 44 (2012), 718-760.  doi: 10.1137/100817942.  Google Scholar

[18]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method. Theory and Applications to Partial Differential Problems, Springer, Singapore, 2018. doi: 10.1007/978-981-13-3032-2.  Google Scholar

[19]

D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.  doi: 10.1016/0022-247X(79)90211-7.  Google Scholar

[20]

A. Collin and S. Imperiale, Mathematical analysis and $2$-scale convergence of an heterogeneous microscopic bidomain model, Math. Models Meth. Appl. Sci., 28 (2018), 979-1035.  doi: 10.1142/S0218202518500264.  Google Scholar

[21]

Y. Coudière, A. Davidovic and C. Poignard, Modified bidomain model with passive periodic heterogeneities, Discrete Contin. Dyn. Systems-S, 13 (2020), 2231-2258. doi: 10.3934/dcdss.2020126.  Google Scholar

[22]

A. Davidovi$\grave{\rm c}$, Multiscale Mathematical Modelling of Structural Heterogeneities in Cardiac Electrophysiology, General Mathematics, Universitè de Bordeaux, 2016. Google Scholar

[23]

P. Donato and K. Le Nguyen, Homogenization for diffusion problems with a nonlinear interfacial resistance, Nonlinear Differ. Equ. Appl., 22 (2015), 1345-1380.  doi: 10.1007/s00030-015-0325-2.  Google Scholar

[24]

A. Gaudiello and M. Lenczner, A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode, Siam J. Appl. Math., 80 (2020), 792-813.  doi: 10.1137/19M1270306.  Google Scholar

[25]

P. GoelJ. Sneyd and A. Friedman, Homogenization of the cell cytoplasm: The calcium bidomain equations, Multiscale Model. Simul., 5 (2006), 1045-1062.  doi: 10.1137/060660783.  Google Scholar

[26]

I. Graf and M. Peter, Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal., 46 (2014), 3025-3049.  doi: 10.1137/130921015.  Google Scholar

[27]

I. GrafM. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells, J. Math. Anal. Appl., 419 (2014), 28-47.  doi: 10.1016/j.jmaa.2014.04.037.  Google Scholar

[28]

E. Grandelius and K. Karlsen, The cardiac bidomain model and homogenization, Netw. Heterog. Media, 14 (2019), 173-204.  doi: 10.3934/nhm.2019009.  Google Scholar

[29]

E. HigginsP. GoelJ. PuglisiD. BersM. Cannell and J. Sneyd, Modelling calcium microdomains using homogenisation, J. Theor. Biol., 247 (2007), 623-644.  doi: 10.1016/j.jtbi.2007.03.019.  Google Scholar

[30]

M. Höpker, Extension operators for Sobolev spaces on periodic domains, their applications, and homogenization of a phase field model for phase transitions in porous media, Ph. D. Thesis, Universit$\ddot{a}$t Bremen, 2016.  Google Scholar

[31]

C. Jerez-HanckesI. Pettersson and V. Rybalko, Derivation of cable equation by multiscale analysis for a model of myelinated axons, Discrete Contin. Dyn. Systems-B, 25 (2020), 815-839.  doi: 10.3934/dcdsb.2019191.  Google Scholar

[32]

N. Kajiwara, On the bidomain equations as parabolic evolution equations, Preprint, available from https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/251618/1/2090-02.pdf. Google Scholar

[33]

J. Keener and J. Sneyd, Mathematical Physiology, Springer, 2004.  Google Scholar

[34]

W. Krassowska and J. Neu, Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21 (1992), 137-199.   Google Scholar

[35]

K. Le Nguyen, Homogenization of heat transfer process in composite materials, J. Elliptic Parabol. Equ., 1 (2015), 175-188.  doi: 10.1007/BF03377374.  Google Scholar

[36]

M. Mabrouk and S. Hassan, Homogenization of a composite medium with a thermal barrier, Math. Meth. Appl. Sci., 27 (2004), 405-425.  doi: 10.1002/mma.460.  Google Scholar

[37]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. Institute of Radio Engineers, 50 (1962), 2061-2070.   Google Scholar

[38]

M. PennacchioG. Savaré and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM J. Math. Anal., 37 (2005), 1333-1370.  doi: 10.1137/040615249.  Google Scholar

[39]

L. Tartar, Problèmes d'homogénéisation dans les équations aux dérivées partielles, in Cours Peccot Collège de France, 1977, partiellement rédigé (ed. H.-c. S. d. F. e. N. dans: F. Murat ed.), Université d’Alger (polycopié), 1977/78. Google Scholar

[40]

C. Timofte, Homogenization results for the calcium dynamics in living cells, Math. Comput. Simul., 133 (2017), 165-174.  doi: 10.1016/j.matcom.2015.06.011.  Google Scholar

[41]

M. Veneroni, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. Methods Appl. Sci., 29 (2006) 1631–1661. doi: 10.1002/mma.740.  Google Scholar

[42]

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10 (2009), 849-868.  doi: 10.1016/j.nonrwa.2007.11.008.  Google Scholar

show all references

References:
[1]

E. AcerbiV. Chiadò PiatG. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481-496.  doi: 10.1016/0362-546X(92)90015-7.  Google Scholar

[2]

M. AmarD. Andreucci and D. Bellaveglia, Homogenization of an alternating Robin-Neumann boundary condition via time-periodic unfolding, Nonlinear Anal. Theory Methods Appl., 153 (2017), 56-77.  doi: 10.1016/j.na.2016.05.018.  Google Scholar

[3]

M. AmarD. Andreucci and D. Bellaveglia, The time-periodic unfolding operator and applications to parabolic homogenization, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 663-700.  doi: 10.4171/RLM/781.  Google Scholar

[4]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Evolution and memory effects in the homogenization limit for electrical conduction in biological tissues, Math. Models Methods Appl. Sci, 14 (2004), 1261-1295.  doi: 10.1142/S0218202504003623.  Google Scholar

[5]

M. AmarD. AndreucciP. Bisegna and R. Gianni, Existence and uniqueness for an elliptic problem with evolution arising in electrodynamics, Nonlinear Anal. Real World Appl., 6 (2005), 367-380.  doi: 10.1016/j.nonrwa.2004.09.002.  Google Scholar

[6]

M. AmarD. AndreucciP. Bisegna and R. Gianni, On a hierarchy of models for electrical conduction in biological tissues, Math. Methods Appl. Sci., 29 (2006), 767-787.  doi: 10.1002/mma.709.  Google Scholar

[7]

M. AmarD. AndreucciP. Bisegna and R. Gianni, A hierarchy of models for the electrical conduction in biological tissues via two-scale convergence: The nonlinear case, Differ. Integral Equ., 26 (2013), 885-912.   Google Scholar

[8]

M. Amar, D. Andreucci, R. Gianni and C. Timofte, Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator, Calc. Var., 59: 99 (2020). doi: 10.1007/s00526-020-01749-x.  Google Scholar

[9]

M. Amar, D. Andreucci and C. Timofte, Well-posedness for a modified bidomain model describing bioelectric activity in damaged heart tissue, preprint, arXiv: 2101.09285. Google Scholar

[10]

M. Amar, I. De Bonis and G. Riey, Homogenization of elliptic problems involving interfaces and singular data, Nonlinear Anal., 189 (2019), 111562. Corrigendum to Homogenization of elliptic problems involving interfaces and singular data. Nonlinear Analysis 203 (2021), 112192. doi: 10.1016/j.na.2020.112192.  Google Scholar

[11]

M. Amar and R. Gianni, Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices, Discrete Contin. Dyn. Systems - B, (4)23 (2018), 1739-1756.  doi: 10.3934/dcdsb.2018078.  Google Scholar

[12]

M. Bendahmane and H. Karlsen, Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue, Netw. Heterog. Media, 1 (2006), 185-218.  doi: 10.3934/nhm.2006.1.185.  Google Scholar

[13]

M. Boulakia, Etude mathématique et numérique de modèles issus du domaine biomédical, Equations aux dérivées partielles, UPMC, 2015. Google Scholar

[14]

M. BoulakiaS. CazeauM. A. FernándezJ. F. Gerbeau and N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study, Ann. Biomed. Eng., 38 (2010), 1071-1097.   Google Scholar

[15]

M. Boulakia, M. A. Fernández, J. F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms, in Functional Imaging and Modeling of the Heart. FIMH 2007. In Lecture Notes in Computer Science (eds. F. Sachse and G. Seemann), Springer, Berlin, 2007, 240–249. Google Scholar

[16]

Y. BourgaultY. Coudière and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal. Real World Appl., (1) (2009), 458-482.  doi: 10.1016/j.nonrwa.2007.10.007.  Google Scholar

[17]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. Math Anal., 44 (2012), 718-760.  doi: 10.1137/100817942.  Google Scholar

[18]

D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method. Theory and Applications to Partial Differential Problems, Springer, Singapore, 2018. doi: 10.1007/978-981-13-3032-2.  Google Scholar

[19]

D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607.  doi: 10.1016/0022-247X(79)90211-7.  Google Scholar

[20]

A. Collin and S. Imperiale, Mathematical analysis and $2$-scale convergence of an heterogeneous microscopic bidomain model, Math. Models Meth. Appl. Sci., 28 (2018), 979-1035.  doi: 10.1142/S0218202518500264.  Google Scholar

[21]

Y. Coudière, A. Davidovic and C. Poignard, Modified bidomain model with passive periodic heterogeneities, Discrete Contin. Dyn. Systems-S, 13 (2020), 2231-2258. doi: 10.3934/dcdss.2020126.  Google Scholar

[22]

A. Davidovi$\grave{\rm c}$, Multiscale Mathematical Modelling of Structural Heterogeneities in Cardiac Electrophysiology, General Mathematics, Universitè de Bordeaux, 2016. Google Scholar

[23]

P. Donato and K. Le Nguyen, Homogenization for diffusion problems with a nonlinear interfacial resistance, Nonlinear Differ. Equ. Appl., 22 (2015), 1345-1380.  doi: 10.1007/s00030-015-0325-2.  Google Scholar

[24]

A. Gaudiello and M. Lenczner, A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode, Siam J. Appl. Math., 80 (2020), 792-813.  doi: 10.1137/19M1270306.  Google Scholar

[25]

P. GoelJ. Sneyd and A. Friedman, Homogenization of the cell cytoplasm: The calcium bidomain equations, Multiscale Model. Simul., 5 (2006), 1045-1062.  doi: 10.1137/060660783.  Google Scholar

[26]

I. Graf and M. Peter, Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells, SIAM J. Math. Anal., 46 (2014), 3025-3049.  doi: 10.1137/130921015.  Google Scholar

[27]

I. GrafM. Peter and J. Sneyd, Homogenization of a nonlinear multiscale model of calcium dynamics in biological cells, J. Math. Anal. Appl., 419 (2014), 28-47.  doi: 10.1016/j.jmaa.2014.04.037.  Google Scholar

[28]

E. Grandelius and K. Karlsen, The cardiac bidomain model and homogenization, Netw. Heterog. Media, 14 (2019), 173-204.  doi: 10.3934/nhm.2019009.  Google Scholar

[29]

E. HigginsP. GoelJ. PuglisiD. BersM. Cannell and J. Sneyd, Modelling calcium microdomains using homogenisation, J. Theor. Biol., 247 (2007), 623-644.  doi: 10.1016/j.jtbi.2007.03.019.  Google Scholar

[30]

M. Höpker, Extension operators for Sobolev spaces on periodic domains, their applications, and homogenization of a phase field model for phase transitions in porous media, Ph. D. Thesis, Universit$\ddot{a}$t Bremen, 2016.  Google Scholar

[31]

C. Jerez-HanckesI. Pettersson and V. Rybalko, Derivation of cable equation by multiscale analysis for a model of myelinated axons, Discrete Contin. Dyn. Systems-B, 25 (2020), 815-839.  doi: 10.3934/dcdsb.2019191.  Google Scholar

[32]

N. Kajiwara, On the bidomain equations as parabolic evolution equations, Preprint, available from https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/251618/1/2090-02.pdf. Google Scholar

[33]

J. Keener and J. Sneyd, Mathematical Physiology, Springer, 2004.  Google Scholar

[34]

W. Krassowska and J. Neu, Homogenization of syncytial tissues, Crit. Rev. Biomed. Eng., 21 (1992), 137-199.   Google Scholar

[35]

K. Le Nguyen, Homogenization of heat transfer process in composite materials, J. Elliptic Parabol. Equ., 1 (2015), 175-188.  doi: 10.1007/BF03377374.  Google Scholar

[36]

M. Mabrouk and S. Hassan, Homogenization of a composite medium with a thermal barrier, Math. Meth. Appl. Sci., 27 (2004), 405-425.  doi: 10.1002/mma.460.  Google Scholar

[37]

J. NagumoS. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. Institute of Radio Engineers, 50 (1962), 2061-2070.   Google Scholar

[38]

M. PennacchioG. Savaré and P. C. Franzone, Multiscale modeling for the bioelectric activity of the heart, SIAM J. Math. Anal., 37 (2005), 1333-1370.  doi: 10.1137/040615249.  Google Scholar

[39]

L. Tartar, Problèmes d'homogénéisation dans les équations aux dérivées partielles, in Cours Peccot Collège de France, 1977, partiellement rédigé (ed. H.-c. S. d. F. e. N. dans: F. Murat ed.), Université d’Alger (polycopié), 1977/78. Google Scholar

[40]

C. Timofte, Homogenization results for the calcium dynamics in living cells, Math. Comput. Simul., 133 (2017), 165-174.  doi: 10.1016/j.matcom.2015.06.011.  Google Scholar

[41]

M. Veneroni, Reaction-diffusion systems for the microscopic cellular model of the cardiac electric field, Math. Methods Appl. Sci., 29 (2006) 1631–1661. doi: 10.1002/mma.740.  Google Scholar

[42]

M. Veneroni, Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field, Nonlinear Anal. Real World Appl., 10 (2009), 849-868.  doi: 10.1016/j.nonrwa.2007.11.008.  Google Scholar

Figure 1.  ${Left}$: the periodic cell $ Y $. $ E^{ \rm{D}} $ is the shaded region and $ E^{ \rm{B}} $ is the white region.${Right}$: the region $ \varOmega $
Figure 2.  The periodic cell $ Y $. $ E^{ \rm{D}} $ is the shaded region and $ E^{ \rm{B}} $ is the white region
[1]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[2]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[3]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[4]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[5]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[6]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[7]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[8]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[9]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[10]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[11]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[12]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[13]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[14]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[15]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[16]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[17]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[18]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[19]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[20]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]