doi: 10.3934/cpaa.2021042

A note on the energy transfer in coupled differential systems

Politecnico di Milano - Dipartimento di Matematica, Via Bonardi 9, 20133 Milano, Italy

* Corresponding author

Received  January 2021 Revised  January 2021 Published  March 2021

We study the energy transfer in the linear system
$ \begin{cases} \ddot u+u+\dot u = b\dot v\\ \ddot v+v-\epsilon \dot v = -b\dot u \end{cases} $
made by two coupled differential equations, the first one dissipative and the second one antidissipative. We see how the competition between the damping and the antidamping mechanisms affect the whole system, depending on the coupling parameter
$ b $
.
Citation: Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021042
References:
[1]

F. Alabau-BoussouiraZ. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749.  doi: 10.1051/cocv/2016011.  Google Scholar

[2]

M. S. AlvesC. BuriolM. V. FerreiraJ. E. Muñoz RiveraM. Sepúlveda and O. Vera, Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479.  doi: 10.1016/j.jmaa.2012.10.019.  Google Scholar

[3]

K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differ. Equ., 249 (2010), 707-727.  doi: 10.1016/j.jde.2010.03.007.  Google Scholar

[4]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.   Google Scholar

[5]

G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system, Semigroup Forum, 57 (1998), 278-292.  doi: 10.1007/PL00005977.  Google Scholar

[6]

M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/asy-191576.  Google Scholar

[7]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differ. Equ., 257 (2014), 523-548.  doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[8]

R. Denk and F. Kammerlander, Exponential stability for a coupled system of damped-undamped plate equations, IMA J. Appl. Math., 83 (2018), 302-322.  doi: 10.1093/imamat/hxy002.  Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[10]

G. R. GoldsteinJ. A. Goldstein and G. Perla Menzala, On the overdamping phenomenon: a general result and applications, Quart. Appl. Math., 71 (2013), 183-199.  doi: 10.1090/S0033-569X-2012-01282-3.  Google Scholar

[11]

J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.  doi: 10.1007/s00033-012-0274-0.  Google Scholar

[12] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974.   Google Scholar
[13]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[14]

Z. Liu and S. Zheng, Semigroups associated with dissipative systems, Chapman & Hall/CRC, Boca Raton, 1999. doi: 0-8493-0615-9.  Google Scholar

[15]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.  doi: 10.1137/S0036142993255058.  Google Scholar

[16]

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

L. Perko, Differential equations and dynamical systems, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[18]

M. L. SantosD. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[19]

R. Triggiani, Heat-viscoelastic plate interaction: analyticity, spectral analysis, exponential decay, Evol. Equ. Control Theory, 7 (2018), 153-182.  doi: 10.3934/eect.2018008.  Google Scholar

show all references

References:
[1]

F. Alabau-BoussouiraZ. Wang and L. Yu, A one-step optimal energy decay formula for indirectly nonlinearly damped hyperbolic systems coupled by velocities, ESAIM Control Optim. Calc. Var., 23 (2017), 721-749.  doi: 10.1051/cocv/2016011.  Google Scholar

[2]

M. S. AlvesC. BuriolM. V. FerreiraJ. E. Muñoz RiveraM. Sepúlveda and O. Vera, Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect, J. Math. Anal. Appl., 399 (2013), 472-479.  doi: 10.1016/j.jmaa.2012.10.019.  Google Scholar

[3]

K. Ammari and S. Nicaise, Stabilization of a transmission wave/plate equation, J. Differ. Equ., 249 (2010), 707-727.  doi: 10.1016/j.jde.2010.03.007.  Google Scholar

[4]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Istit. Mat. Univ. Trieste, 28 (1997), 1-28.   Google Scholar

[5]

G. Avalos and I. Lasiecka, The strong stability of a semigroup arising from a coupled hyperbolic/parabolic system, Semigroup Forum, 57 (1998), 278-292.  doi: 10.1007/PL00005977.  Google Scholar

[6]

M. ContiV. Pata and R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptot. Anal., 120 (2020), 1-21.  doi: 10.3233/asy-191576.  Google Scholar

[7]

F. Dell'Oro and V. Pata, On the stability of Timoshenko systems with Gurtin-Pipkin thermal law, J. Differ. Equ., 257 (2014), 523-548.  doi: 10.1016/j.jde.2014.04.009.  Google Scholar

[8]

R. Denk and F. Kammerlander, Exponential stability for a coupled system of damped-undamped plate equations, IMA J. Appl. Math., 83 (2018), 302-322.  doi: 10.1093/imamat/hxy002.  Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[10]

G. R. GoldsteinJ. A. Goldstein and G. Perla Menzala, On the overdamping phenomenon: a general result and applications, Quart. Appl. Math., 71 (2013), 183-199.  doi: 10.1090/S0033-569X-2012-01282-3.  Google Scholar

[11]

J. Hao and Z. Liu, Stability of an abstract system of coupled hyperbolic and parabolic equations, Z. Angew. Math. Phys., 64 (2013), 1145-1159.  doi: 10.1007/s00033-012-0274-0.  Google Scholar

[12] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New York, 1974.   Google Scholar
[13]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899.  doi: 10.1137/0523047.  Google Scholar

[14]

Z. Liu and S. Zheng, Semigroups associated with dissipative systems, Chapman & Hall/CRC, Boca Raton, 1999. doi: 0-8493-0615-9.  Google Scholar

[15]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563.  doi: 10.1137/S0036142993255058.  Google Scholar

[16]

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

L. Perko, Differential equations and dynamical systems, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4684-0392-3.  Google Scholar

[18]

M. L. SantosD. S. Almeida Júnior and J. E. Muñoz Rivera, The stability number of the Timoshenko system with second sound, J. Differ. Equ., 253 (2012), 2715-2733.  doi: 10.1016/j.jde.2012.07.012.  Google Scholar

[19]

R. Triggiani, Heat-viscoelastic plate interaction: analyticity, spectral analysis, exponential decay, Evol. Equ. Control Theory, 7 (2018), 153-182.  doi: 10.3934/eect.2018008.  Google Scholar

Figure 1.  Plot of $ {{\mathtt{E}}} $ for $ \epsilon = 1 $ and $ b = 0.99 $ (black), $ b = 1 $ (blue) and $ b = 1.01 $ (red)
Figure 2.  Parametric plot of $ t\mapsto (u(t), \dot u(t)) $ for $ \epsilon = 1 $ and $ b = \sqrt{\frac{23}{13}+\frac{13}{23}-1} $
Figure 3.  $ {{\mathtt{E}}} $ for $ \epsilon = 1 $ and $ \boldsymbol{z}_0 = (1, 0, 0, 0) $ with different values of $ b $
Figure 4.  $ {{\mathtt{E}}} $ for $ \epsilon = 1 $ and $ \boldsymbol{z}_0 = (1, 0.5, 0, 0) $ with different values of $ b $
Figure 5.  Numerical $ u $ (blue) vs asymptotic $ u $ (red) for $ \epsilon = 1 $ with different values of $ b $ (and different time-scales)
Figure 6.  Numerical $ v $ (blue) vs asymptotic $ v $ (red) for $ \epsilon = 1 $ with different values of $ b $ (and different time-scales)
Figure 7.  Plot of $ {{\mathtt{E}}} $ for $ \epsilon = 0.5 $ and $ b = \sqrt{0.5}-0.1 $ (black), $ b = \sqrt{0.5} $ (blue) and $ b = \sqrt{0.5}+0.1 $ (red)
Figure 8.  Parametric plot of $ t\mapsto (u(t), \dot u(t)) $ for $ \epsilon = \frac12 $ and $ b = 1 $
Figure 9.  Parametric plot of $ t\mapsto (u(t), \dot u(t)) $ for $ \epsilon = \frac12 $ and $ b = 2 $
[1]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[4]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[5]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[6]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[7]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[8]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[9]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[10]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[11]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[12]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[13]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[14]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[15]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[16]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[18]

Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299

[19]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[20]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]