June  2022, 21(6): 1857-1871. doi: 10.3934/cpaa.2021043

On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation

1. 

Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

2. 

School of Mathematical Sciences University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author

Received  October 2020 Revised  January 2021 Published  June 2022 Early access  March 2021

Fund Project: The work is supported by the National Science Foundation of China, grants no. 12071463 and no. 61573342 and Key Research Program of Frontier Sciences, CAS, no. QYZDJ-SSW-SYS011

Long time behavior of a semilinear wave equation with variable coefficients with nonlinear boundary dissipation is considered. It is shown that the existence of global and compact attractors depends on the curvature properties of a Riemannian metric given by the variable coefficients.

Citation: Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043
References:
[1]

I. Chueshov, Strong solutions and attractors for von Karman equations, Math USSR Sbornik, 69 (1991), 25-36.  doi: 10.1070/SM1991v069n01ABEH001230.

[2]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. PDE., 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.

[3]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dyn. Differ. Equ., 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.

[4]

I. ChueshovM. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Commun. Partial Differ. Equ., 29 (2005), 1847-1876.  doi: 10.1081/PDE-200040203.

[5]

I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Commun. Partial Differ. Equ., 36 (2010), 67-99.  doi: 10.1080/03605302.2010.484472.

[6]

I. ChueshovIgor and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differ. Equ., 198 (2004), 196-231.  doi: 10.1016/j.jde.2003.08.008.

[7]

I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195-241.  doi: 10.1007/s00245-007-9031-8.

[8]

E. Fereisel, Global attractors for semilinear damped wave equations with supercritical exponent, J. Differ. Equ., 116 (1995), 431-447.  doi: 10.1006/jdeq.1995.1042.

[9]

B. Francesca and D. Toundykov, Finite dimensional attractor for a composite system of wave/plate equations with localised damping, Nonlinearity, 23 (2010), 2271-2306.  doi: 10.1088/0951-7715/23/9/011.

[10]

J. Ghidaglia and R. Temam, Regularity of the solutions of second order evolution equations and their attractors, Annali Della Scuola Normale Superiore di Pisa, 14 (1987), 485-511. 

[11]

J. Ghidaglia and R. Temam, Attractors of damped nonlinear hyperbolic equations, J. Math. Pure Appl., 66 (1987), 273-319. 

[12]

J. Hale, Asymptotic Behavior of Dissipative Systems, AMS, 1988. doi: 10.1090/surv/025.

[13]

A. Haraux, Semilinear Hyperbolic Problems in Bounded Domains, In MathematicalReports, Harwood Gordon Breach, NewYork, 1987.

[14]

I. Lasiecka, Finite-Dimensionality of Attractors Associated with von Karman Plate Equations and Boundary Damping, J. Differ. Equ., 117 (1995), 357-389.  doi: 10.1006/jdeq.1995.1057.

[15]

I. Lasiecka, Local and global compact attractors arising in nonlinear elasticity, the case of noncompact nonlinearity and nonlinear dissipation, J. Math. Anal. Appl., 196 (1995), 332–C360. doi: 10.1006/jmaa.1995.1413.

[16]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of a semilinear wave equation with nonlinear boundary dissipation, Differ. Integral Equ., 6 (1993), 507-533. 

[17]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.  doi: 10.1007/BF01182480.

[18]

I. LasieckaI. Chueshov and F. Bucci, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6 (2012), 113-140.  doi: 10.3934/cpaa.2007.6.113.

[19]

I. Lasiecka and I. Chueshov, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2012), 777-809.  doi: 10.3934/dcds.2006.15.777.

[20]

R. Showalter, Monotone operators in banach spaces and nonlinear partial differential equations, AMS, Providence, 1997. doi: 10.1090/surv/049.

[21]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata Serie, 148 (1987), 65-96.  doi: 10.1007/BF01762360.

[22]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. doi: 10.1007/978-1-4684-0313-8.

[23]

R. Triggian and P. F. Yao, Carleman estimates with no lower-order terms for general riemann wave equations. global uniqueness and observability in one shot, Appl. Math. Optim., 46 (2002), 331-375.  doi: 10.1007/s00245-002-0751-5.

[24]

P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37 (1999), 1568-1599.  doi: 10.1137/S0363012997331482.

[25]

P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., 61 (2010), 191-233.  doi: 10.1007/s00245-009-9088-7.

[26]

P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differ. Equ., 241 (2007), 62-93.  doi: 10.1016/j.jde.2007.06.014.

[27] P. F. Yao, Modeling and Control in Vibrational and Structural Dynamics. A differential geometric approach. Chapman Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011.  doi: 10.1201/b11042.
[28]

Z. F. Zhang and P. F. Yao, Global smooth solutions of the quasilinear wave equation with internal velocity feedbacks, SIAM J. Control Optim., 47 (2008), 2044-2077.  doi: 10.1137/070679454.

show all references

References:
[1]

I. Chueshov, Strong solutions and attractors for von Karman equations, Math USSR Sbornik, 69 (1991), 25-36.  doi: 10.1070/SM1991v069n01ABEH001230.

[2]

I. ChueshovM. Eller and I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. PDE., 27 (2002), 1901-1951.  doi: 10.1081/PDE-120016132.

[3]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dyn. Differ. Equ., 16 (2004), 469-512.  doi: 10.1007/s10884-004-4289-x.

[4]

I. ChueshovM. Eller and I. Lasiecka, Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation, Commun. Partial Differ. Equ., 29 (2005), 1847-1876.  doi: 10.1081/PDE-200040203.

[5]

I. Chueshov and I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Commun. Partial Differ. Equ., 36 (2010), 67-99.  doi: 10.1080/03605302.2010.484472.

[6]

I. ChueshovIgor and I. Lasiecka, Global attractors for von Karman evolutions with a nonlinear boundary dissipation, J. Differ. Equ., 198 (2004), 196-231.  doi: 10.1016/j.jde.2003.08.008.

[7]

I. Chueshov and I. Lasiecka, Attractors and long time behavior of von Karman thermoelastic plates, Appl. Math. Optim., 58 (2008), 195-241.  doi: 10.1007/s00245-007-9031-8.

[8]

E. Fereisel, Global attractors for semilinear damped wave equations with supercritical exponent, J. Differ. Equ., 116 (1995), 431-447.  doi: 10.1006/jdeq.1995.1042.

[9]

B. Francesca and D. Toundykov, Finite dimensional attractor for a composite system of wave/plate equations with localised damping, Nonlinearity, 23 (2010), 2271-2306.  doi: 10.1088/0951-7715/23/9/011.

[10]

J. Ghidaglia and R. Temam, Regularity of the solutions of second order evolution equations and their attractors, Annali Della Scuola Normale Superiore di Pisa, 14 (1987), 485-511. 

[11]

J. Ghidaglia and R. Temam, Attractors of damped nonlinear hyperbolic equations, J. Math. Pure Appl., 66 (1987), 273-319. 

[12]

J. Hale, Asymptotic Behavior of Dissipative Systems, AMS, 1988. doi: 10.1090/surv/025.

[13]

A. Haraux, Semilinear Hyperbolic Problems in Bounded Domains, In MathematicalReports, Harwood Gordon Breach, NewYork, 1987.

[14]

I. Lasiecka, Finite-Dimensionality of Attractors Associated with von Karman Plate Equations and Boundary Damping, J. Differ. Equ., 117 (1995), 357-389.  doi: 10.1006/jdeq.1995.1057.

[15]

I. Lasiecka, Local and global compact attractors arising in nonlinear elasticity, the case of noncompact nonlinearity and nonlinear dissipation, J. Math. Anal. Appl., 196 (1995), 332–C360. doi: 10.1006/jmaa.1995.1413.

[16]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of a semilinear wave equation with nonlinear boundary dissipation, Differ. Integral Equ., 6 (1993), 507-533. 

[17]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224.  doi: 10.1007/BF01182480.

[18]

I. LasieckaI. Chueshov and F. Bucci, Global attractor for a composite system of nonlinear wave and plate equations, Commun. Pure Appl. Anal., 6 (2012), 113-140.  doi: 10.3934/cpaa.2007.6.113.

[19]

I. Lasiecka and I. Chueshov, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2012), 777-809.  doi: 10.3934/dcds.2006.15.777.

[20]

R. Showalter, Monotone operators in banach spaces and nonlinear partial differential equations, AMS, Providence, 1997. doi: 10.1090/surv/049.

[21]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica Pura ed Applicata Serie, 148 (1987), 65-96.  doi: 10.1007/BF01762360.

[22]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, 1988. doi: 10.1007/978-1-4684-0313-8.

[23]

R. Triggian and P. F. Yao, Carleman estimates with no lower-order terms for general riemann wave equations. global uniqueness and observability in one shot, Appl. Math. Optim., 46 (2002), 331-375.  doi: 10.1007/s00245-002-0751-5.

[24]

P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37 (1999), 1568-1599.  doi: 10.1137/S0363012997331482.

[25]

P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., 61 (2010), 191-233.  doi: 10.1007/s00245-009-9088-7.

[26]

P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differ. Equ., 241 (2007), 62-93.  doi: 10.1016/j.jde.2007.06.014.

[27] P. F. Yao, Modeling and Control in Vibrational and Structural Dynamics. A differential geometric approach. Chapman Hall/CRC Applied Mathematics and Nonlinear Science Series, CRC Press, Boca Raton, FL, 2011.  doi: 10.1201/b11042.
[28]

Z. F. Zhang and P. F. Yao, Global smooth solutions of the quasilinear wave equation with internal velocity feedbacks, SIAM J. Control Optim., 47 (2008), 2044-2077.  doi: 10.1137/070679454.

[1]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[2]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control and Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[3]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[4]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[5]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[6]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[7]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[8]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control and Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

[9]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[10]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2301-2328. doi: 10.3934/cpaa.2016038

[11]

Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731

[12]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[13]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[14]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[15]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[16]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[17]

Ning-An Lai, Yi Zhou. Blow up for initial boundary value problem of critical semilinear wave equation in two space dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1499-1510. doi: 10.3934/cpaa.2018072

[18]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

[19]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[20]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (554)
  • HTML views (524)
  • Cited by (0)

Other articles
by authors

[Back to Top]