doi: 10.3934/cpaa.2021044

Spatial asymptotics of mild solutions to the time-dependent Oseen system

Univ. du Littoral Côte d'Opale, EA 2797 – LMPA – Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62228 Calais, France

Received  April 2020 Revised  January 2021 Published  March 2021

We consider mild solutions to the 3D time-dependent Oseen system with homogeneous Dirichlet boundary conditions, under weak assumptions on the data. Such solutions are defined via the semigroup generated by the Oseen operator in $ L^q. $ They turn out to be also $ L^q $-weak solutions to the Oseen system. On the basis of known results about spatial asymptotics of the latter type of solutions, we then derive pointwise estimates of the spatial decay of mild solutions. The rate of decay depends in particular on $ L^p $-integrability in time of the external force.

Citation: Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021044
References:
[1]

P. Deuring, Spatial decay of time-dependent Oseen flows, SIAM J. Math. Anal., 41 (2009), 886-922.  doi: 10.1137/080723831.  Google Scholar

[2]

P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb{R}^3 $: spatial decay of the velocity, Math. Bohemica, 138 (2013), 299-324.   Google Scholar

[3]

P. Deuring, Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2757-2776.  doi: 10.3934/dcds.2013.33.2757.  Google Scholar

[4]

P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity, SIAM J. Math. Anal., 45 (2013), 1388-1421.  doi: 10.1137/120872255.  Google Scholar

[5]

P. Deuring, Oseen resolvent estimates with small resolvent parameter, J. Diff. Equ., 265 (2018), 280-311.  doi: 10.1016/j.jde.2018.02.033.  Google Scholar

[6]

P. Deuring, Pointwise decay in space and in time for incompressible flow around a rigid body moving with constant velocity, J. Math. Fluid Mech., 21 (2019), article 11. doi: 10.1007/s00021-019-0414-9.  Google Scholar

[7]

P. Deuring, The 3D time-dependent Oseen system: link between $L^p$-integrability in time and pointwise decay in space, to appear in J. Math. Fluid Mech, available from https://hal.archives-ouvertes.fr/hal-02465649. Google Scholar

[8]

P. Deuring, $L^q$-weak solutions to the time-dependent Oseen system: decay estimates, to appear in Math. Nachr, available from https://hal.archives-ouvertes.fr/hal-02465651. Google Scholar

[9]

P. Deuring, Time-dependent incompressible viscous flows around a rigid body: estimates of spatial decay independent of boundary conditions, preprint, Available from https://hal.archives-ouvertes.fr/hal-02508815. doi: 10.1137/080723831.  Google Scholar

[10]

P. Deuring and W. Varnhorn, On Oseen resolvent estimates, Diff. Int. Equat., 23 (2010), 1139-1149.   Google Scholar

[11]

Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain, Indiana Univ. Math. J., 53 (2004), 1291-1330.  doi: 10.1512/iumj.2004.53.2463.  Google Scholar

[12]

Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation, J. Math. Fluid Mech., 7 (2005), 339-367.  doi: 10.1007/s00021-004-0132-8.  Google Scholar

[13]

R. Farwig and J. Neustupa, On the spectrum of an Oseen-type operator arising from flow around a rotating body, Int. Equ. Oper. Theory, 62 (2008), 169-189.  doi: 10.1007/s00020-008-1616-3.  Google Scholar

[14]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2$^nd$ edition, Springer, New York e.a., 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[15]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Math. Soc. Colloquium Publications, American Mathematical Society, Providence R. I., 1957.  Google Scholar

[16]

T. Hishida, Large time behavior of a generalized Oseen evolution operator, with applications to the Navier-Stokes flow past a rotating obstacle, Math. Ann., 372 (2018), 915-949.  doi: 10.1007/s00208-018-1649-0.  Google Scholar

[17]

T. Hishida, Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains, Arch. Rational Mech. Anal., 238 (2020), 215-254.  doi: 10.1007/s00205-020-01541-3.  Google Scholar

[18]

G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations, in Approximation methods for Navier-Stokes problems (ed. R. Rautmann), Springer, 1979.  Google Scholar

[19]

T. Kobayashi and Y. Shibata, On the Oseen equation in three-dimensional exterior domains, Math. Ann., 310 (1998), 1-45.  doi: 10.1007/s002080050134.  Google Scholar

[20]

H. Kozono, $L^1$-solutions of the Navier-Stokes equations in exterior domains, Math. Ann., 312 (1998), 319-340.  doi: 10.1007/s002080050224.  Google Scholar

[21]

H. Kozono, Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains, Math. Ann., 320 (2001), 709-730.  doi: 10.1007/PL00004492.  Google Scholar

[22]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.   Google Scholar

[23]

R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies, J. Math. Soc. Japan, 36 (1984), 497-522.  doi: 10.2969/jmsj/03630497.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, Springer, New York, 1983. doi: 10.1007/PL00004457.  Google Scholar

[25]

L. Weis, Operator-valued Fourier multiplier theorems and maximal regularity, Math. Ann., 319 (2001), 735-758.   Google Scholar

[26]

K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer, Berlin, 1980.  Google Scholar

show all references

References:
[1]

P. Deuring, Spatial decay of time-dependent Oseen flows, SIAM J. Math. Anal., 41 (2009), 886-922.  doi: 10.1137/080723831.  Google Scholar

[2]

P. Deuring, The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb{R}^3 $: spatial decay of the velocity, Math. Bohemica, 138 (2013), 299-324.   Google Scholar

[3]

P. Deuring, Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2757-2776.  doi: 10.3934/dcds.2013.33.2757.  Google Scholar

[4]

P. Deuring, Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity, SIAM J. Math. Anal., 45 (2013), 1388-1421.  doi: 10.1137/120872255.  Google Scholar

[5]

P. Deuring, Oseen resolvent estimates with small resolvent parameter, J. Diff. Equ., 265 (2018), 280-311.  doi: 10.1016/j.jde.2018.02.033.  Google Scholar

[6]

P. Deuring, Pointwise decay in space and in time for incompressible flow around a rigid body moving with constant velocity, J. Math. Fluid Mech., 21 (2019), article 11. doi: 10.1007/s00021-019-0414-9.  Google Scholar

[7]

P. Deuring, The 3D time-dependent Oseen system: link between $L^p$-integrability in time and pointwise decay in space, to appear in J. Math. Fluid Mech, available from https://hal.archives-ouvertes.fr/hal-02465649. Google Scholar

[8]

P. Deuring, $L^q$-weak solutions to the time-dependent Oseen system: decay estimates, to appear in Math. Nachr, available from https://hal.archives-ouvertes.fr/hal-02465651. Google Scholar

[9]

P. Deuring, Time-dependent incompressible viscous flows around a rigid body: estimates of spatial decay independent of boundary conditions, preprint, Available from https://hal.archives-ouvertes.fr/hal-02508815. doi: 10.1137/080723831.  Google Scholar

[10]

P. Deuring and W. Varnhorn, On Oseen resolvent estimates, Diff. Int. Equat., 23 (2010), 1139-1149.   Google Scholar

[11]

Y. Enomoto and Y. Shibata, Local energy decay of solutions to the Oseen equation in the exterior domain, Indiana Univ. Math. J., 53 (2004), 1291-1330.  doi: 10.1512/iumj.2004.53.2463.  Google Scholar

[12]

Y. Enomoto and Y. Shibata, On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation, J. Math. Fluid Mech., 7 (2005), 339-367.  doi: 10.1007/s00021-004-0132-8.  Google Scholar

[13]

R. Farwig and J. Neustupa, On the spectrum of an Oseen-type operator arising from flow around a rotating body, Int. Equ. Oper. Theory, 62 (2008), 169-189.  doi: 10.1007/s00020-008-1616-3.  Google Scholar

[14]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2$^nd$ edition, Springer, New York e.a., 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[15]

E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Math. Soc. Colloquium Publications, American Mathematical Society, Providence R. I., 1957.  Google Scholar

[16]

T. Hishida, Large time behavior of a generalized Oseen evolution operator, with applications to the Navier-Stokes flow past a rotating obstacle, Math. Ann., 372 (2018), 915-949.  doi: 10.1007/s00208-018-1649-0.  Google Scholar

[17]

T. Hishida, Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains, Arch. Rational Mech. Anal., 238 (2020), 215-254.  doi: 10.1007/s00205-020-01541-3.  Google Scholar

[18]

G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations, in Approximation methods for Navier-Stokes problems (ed. R. Rautmann), Springer, 1979.  Google Scholar

[19]

T. Kobayashi and Y. Shibata, On the Oseen equation in three-dimensional exterior domains, Math. Ann., 310 (1998), 1-45.  doi: 10.1007/s002080050134.  Google Scholar

[20]

H. Kozono, $L^1$-solutions of the Navier-Stokes equations in exterior domains, Math. Ann., 312 (1998), 319-340.  doi: 10.1007/s002080050224.  Google Scholar

[21]

H. Kozono, Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains, Math. Ann., 320 (2001), 709-730.  doi: 10.1007/PL00004492.  Google Scholar

[22]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.   Google Scholar

[23]

R. Mizumachi, On the asymptotic behaviour of incompressible viscous fluid motions past bodies, J. Math. Soc. Japan, 36 (1984), 497-522.  doi: 10.2969/jmsj/03630497.  Google Scholar

[24]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, Springer, New York, 1983. doi: 10.1007/PL00004457.  Google Scholar

[25]

L. Weis, Operator-valued Fourier multiplier theorems and maximal regularity, Math. Ann., 319 (2001), 735-758.   Google Scholar

[26]

K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer, Berlin, 1980.  Google Scholar

[1]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[2]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

[3]

Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021127

[4]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[5]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[6]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[7]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[8]

Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362

[9]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[10]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[11]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[12]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[13]

Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253

[14]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[15]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[16]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Nguyen Minh Tung, Mai Van Duy. Painlevé-Kuratowski convergences of the solution sets for vector optimization problems with free disposal sets. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021066

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (17)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]