-
Previous Article
Collective behaviors of the Lohe Hermitian sphere model with inertia
- CPAA Home
- This Issue
-
Next Article
A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations
Spatial asymptotics of mild solutions to the time-dependent Oseen system
Univ. du Littoral Côte d'Opale, EA 2797 – LMPA – Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville, F-62228 Calais, France |
We consider mild solutions to the 3D time-dependent Oseen system with homogeneous Dirichlet boundary conditions, under weak assumptions on the data. Such solutions are defined via the semigroup generated by the Oseen operator in $ L^q. $ They turn out to be also $ L^q $-weak solutions to the Oseen system. On the basis of known results about spatial asymptotics of the latter type of solutions, we then derive pointwise estimates of the spatial decay of mild solutions. The rate of decay depends in particular on $ L^p $-integrability in time of the external force.
References:
[1] |
P. Deuring,
Spatial decay of time-dependent Oseen flows, SIAM J. Math. Anal., 41 (2009), 886-922.
doi: 10.1137/080723831. |
[2] |
P. Deuring,
The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb{R}^3 $: spatial decay of the velocity, Math. Bohemica, 138 (2013), 299-324.
|
[3] |
P. Deuring,
Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2757-2776.
doi: 10.3934/dcds.2013.33.2757. |
[4] |
P. Deuring,
Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity, SIAM J. Math. Anal., 45 (2013), 1388-1421.
doi: 10.1137/120872255. |
[5] |
P. Deuring,
Oseen resolvent estimates with small resolvent parameter, J. Diff. Equ., 265 (2018), 280-311.
doi: 10.1016/j.jde.2018.02.033. |
[6] |
P. Deuring, Pointwise decay in space and in time for incompressible flow around a rigid body moving with constant velocity, J. Math. Fluid Mech., 21 (2019), article 11.
doi: 10.1007/s00021-019-0414-9. |
[7] |
P. Deuring, The 3D time-dependent Oseen system: link between $L^p$-integrability in time and pointwise decay in space, to appear in J. Math. Fluid Mech, available from https://hal.archives-ouvertes.fr/hal-02465649. Google Scholar |
[8] |
P. Deuring, $L^q$-weak solutions to the time-dependent Oseen system: decay estimates, to appear in Math. Nachr, available from https://hal.archives-ouvertes.fr/hal-02465651. Google Scholar |
[9] |
P. Deuring, Time-dependent incompressible viscous flows around a rigid body: estimates of spatial decay independent of boundary conditions, preprint, Available from https://hal.archives-ouvertes.fr/hal-02508815.
doi: 10.1137/080723831. |
[10] |
P. Deuring and W. Varnhorn,
On Oseen resolvent estimates, Diff. Int. Equat., 23 (2010), 1139-1149.
|
[11] |
Y. Enomoto and Y. Shibata,
Local energy decay of solutions to the Oseen equation in the exterior domain, Indiana Univ. Math. J., 53 (2004), 1291-1330.
doi: 10.1512/iumj.2004.53.2463. |
[12] |
Y. Enomoto and Y. Shibata,
On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation, J. Math. Fluid Mech., 7 (2005), 339-367.
doi: 10.1007/s00021-004-0132-8. |
[13] |
R. Farwig and J. Neustupa,
On the spectrum of an Oseen-type operator arising from flow around a rotating body, Int. Equ. Oper. Theory, 62 (2008), 169-189.
doi: 10.1007/s00020-008-1616-3. |
[14] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2$^nd$ edition, Springer, New York e.a., 2011.
doi: 10.1007/978-0-387-09620-9. |
[15] |
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Math. Soc. Colloquium Publications, American Mathematical Society, Providence R. I., 1957. |
[16] |
T. Hishida,
Large time behavior of a generalized Oseen evolution operator, with applications to the Navier-Stokes flow past a rotating obstacle, Math. Ann., 372 (2018), 915-949.
doi: 10.1007/s00208-018-1649-0. |
[17] |
T. Hishida,
Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains, Arch. Rational Mech. Anal., 238 (2020), 215-254.
doi: 10.1007/s00205-020-01541-3. |
[18] |
G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations, in Approximation methods for Navier-Stokes problems (ed. R. Rautmann), Springer, 1979. |
[19] |
T. Kobayashi and Y. Shibata,
On the Oseen equation in three-dimensional exterior domains, Math. Ann., 310 (1998), 1-45.
doi: 10.1007/s002080050134. |
[20] |
H. Kozono,
$L^1$-solutions of the Navier-Stokes equations in exterior domains, Math. Ann., 312 (1998), 319-340.
doi: 10.1007/s002080050224. |
[21] |
H. Kozono,
Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains, Math. Ann., 320 (2001), 709-730.
doi: 10.1007/PL00004492. |
[22] |
T. Miyakawa,
On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.
|
[23] |
R. Mizumachi,
On the asymptotic behaviour of incompressible viscous fluid motions past bodies, J. Math. Soc. Japan, 36 (1984), 497-522.
doi: 10.2969/jmsj/03630497. |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, Springer, New York, 1983.
doi: 10.1007/PL00004457. |
[25] |
L. Weis, Operator-valued Fourier multiplier theorems and maximal regularity, Math. Ann., 319 (2001), 735-758. Google Scholar |
[26] |
K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer, Berlin, 1980. |
show all references
References:
[1] |
P. Deuring,
Spatial decay of time-dependent Oseen flows, SIAM J. Math. Anal., 41 (2009), 886-922.
doi: 10.1137/080723831. |
[2] |
P. Deuring,
The Cauchy problem for the homogeneous time-dependent Oseen system in $ \mathbb{R}^3 $: spatial decay of the velocity, Math. Bohemica, 138 (2013), 299-324.
|
[3] |
P. Deuring,
Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2757-2776.
doi: 10.3934/dcds.2013.33.2757. |
[4] |
P. Deuring,
Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity, SIAM J. Math. Anal., 45 (2013), 1388-1421.
doi: 10.1137/120872255. |
[5] |
P. Deuring,
Oseen resolvent estimates with small resolvent parameter, J. Diff. Equ., 265 (2018), 280-311.
doi: 10.1016/j.jde.2018.02.033. |
[6] |
P. Deuring, Pointwise decay in space and in time for incompressible flow around a rigid body moving with constant velocity, J. Math. Fluid Mech., 21 (2019), article 11.
doi: 10.1007/s00021-019-0414-9. |
[7] |
P. Deuring, The 3D time-dependent Oseen system: link between $L^p$-integrability in time and pointwise decay in space, to appear in J. Math. Fluid Mech, available from https://hal.archives-ouvertes.fr/hal-02465649. Google Scholar |
[8] |
P. Deuring, $L^q$-weak solutions to the time-dependent Oseen system: decay estimates, to appear in Math. Nachr, available from https://hal.archives-ouvertes.fr/hal-02465651. Google Scholar |
[9] |
P. Deuring, Time-dependent incompressible viscous flows around a rigid body: estimates of spatial decay independent of boundary conditions, preprint, Available from https://hal.archives-ouvertes.fr/hal-02508815.
doi: 10.1137/080723831. |
[10] |
P. Deuring and W. Varnhorn,
On Oseen resolvent estimates, Diff. Int. Equat., 23 (2010), 1139-1149.
|
[11] |
Y. Enomoto and Y. Shibata,
Local energy decay of solutions to the Oseen equation in the exterior domain, Indiana Univ. Math. J., 53 (2004), 1291-1330.
doi: 10.1512/iumj.2004.53.2463. |
[12] |
Y. Enomoto and Y. Shibata,
On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation, J. Math. Fluid Mech., 7 (2005), 339-367.
doi: 10.1007/s00021-004-0132-8. |
[13] |
R. Farwig and J. Neustupa,
On the spectrum of an Oseen-type operator arising from flow around a rotating body, Int. Equ. Oper. Theory, 62 (2008), 169-189.
doi: 10.1007/s00020-008-1616-3. |
[14] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, 2$^nd$ edition, Springer, New York e.a., 2011.
doi: 10.1007/978-0-387-09620-9. |
[15] |
E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Math. Soc. Colloquium Publications, American Mathematical Society, Providence R. I., 1957. |
[16] |
T. Hishida,
Large time behavior of a generalized Oseen evolution operator, with applications to the Navier-Stokes flow past a rotating obstacle, Math. Ann., 372 (2018), 915-949.
doi: 10.1007/s00208-018-1649-0. |
[17] |
T. Hishida,
Decay estimates of gradient of a generalized Oseen evolution operator arising from time-dependent rigid motions in exterior domains, Arch. Rational Mech. Anal., 238 (2020), 215-254.
doi: 10.1007/s00205-020-01541-3. |
[18] |
G. H. Knightly, Some decay properties of solutions of the Navier-Stokes equations, in Approximation methods for Navier-Stokes problems (ed. R. Rautmann), Springer, 1979. |
[19] |
T. Kobayashi and Y. Shibata,
On the Oseen equation in three-dimensional exterior domains, Math. Ann., 310 (1998), 1-45.
doi: 10.1007/s002080050134. |
[20] |
H. Kozono,
$L^1$-solutions of the Navier-Stokes equations in exterior domains, Math. Ann., 312 (1998), 319-340.
doi: 10.1007/s002080050224. |
[21] |
H. Kozono,
Rapid time-decay and net force to the obstacles by the Stokes flow in exterior domains, Math. Ann., 320 (2001), 709-730.
doi: 10.1007/PL00004492. |
[22] |
T. Miyakawa,
On nonstationary solutions of the Navier-Stokes equations in an exterior domain, Hiroshima Math. J., 12 (1982), 115-140.
|
[23] |
R. Mizumachi,
On the asymptotic behaviour of incompressible viscous fluid motions past bodies, J. Math. Soc. Japan, 36 (1984), 497-522.
doi: 10.2969/jmsj/03630497. |
[24] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Science, Springer, New York, 1983.
doi: 10.1007/PL00004457. |
[25] |
L. Weis, Operator-valued Fourier multiplier theorems and maximal regularity, Math. Ann., 319 (2001), 735-758. Google Scholar |
[26] |
K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer, Berlin, 1980. |
[1] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[2] |
Xin Zhong. Global strong solution and exponential decay for nonhomogeneous Navier-Stokes and magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246 |
[3] |
Jing Li, Gui-Quan Sun, Zhen Jin. Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021127 |
[4] |
Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021071 |
[5] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[6] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405 |
[7] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[8] |
Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362 |
[9] |
Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021048 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[11] |
Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042 |
[12] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[13] |
Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253 |
[14] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[15] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[16] |
Melis Alpaslan Takan, Refail Kasimbeyli. Multiobjective mathematical models and solution approaches for heterogeneous fixed fleet vehicle routing problems. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2073-2095. doi: 10.3934/jimo.2020059 |
[17] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[18] |
Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021047 |
[19] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[20] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]