May  2021, 20(5): 1851-1866. doi: 10.3934/cpaa.2021045

Jump and variational inequalities for averaging operators with variable kernels

Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

* Corresponding author

Received  September 2020 Revised  January 2021 Published  May 2021 Early access  March 2021

Fund Project: The second author is supported by NSF-China grant-11871096 and grant-11471033

In this paper, we prove that the jump function and variation of averaging operators with rough variable kernels are bounded on $ L^{2}(\mathbb{R}^{n}) $ if $ \Omega\in L^{\infty}(\mathbb{R}^{n})\times L^{q}(\mathbb{S}^{n-1}) $ for $ q>2(n-1)/n $ and $ n\geq2 $. Moreover, we obtain the boundedness on weighted $ L^{p}(\mathbb{R}^{n}) $ spaces of the jump function and $ \rho $-variations for averaging operators with smooth variable kernels. Finally, we extend the result to the Morrey spaces.

Citation: Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1851-1866. doi: 10.3934/cpaa.2021045
References:
[1]

K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math., 69 (1981), 19-31.  doi: 10.4064/sm-69-1-19-31.

[2]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études SCI. Publ. Math., 69 (1989), 5–41. doi: 10.1007/BF02698838.

[3]

A. P. Calderón and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc., 78 (1955), 209-224.  doi: 10.2307/1992955.

[4]

A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921.  doi: 10.2307/2372441.

[5]

A. P. Calderón and A. Zygmund, On singular integrals with variable kernels, Applicable Anal., 7 (1978), 221-238.  doi: 10.1080/00036817808839193.

[6]

Y. Chen, Boundedness of the commutator of Marcinkiewicz integral with rough variable kernel, Acta Math. Sin. (Engl. Ser.), 25 (2009), 983-1000.  doi: 10.1007/s10114-009-7681-y.

[7]

Y. ChenY. Ding and R. Li, $L^{2}$-boundedness for maximal commutators with rough variable kernels, Rev. Mat. Iberoamericana, 27 (2011), 361-391.  doi: 10.4171/RMI/640.

[8]

Y. ChenY. DingG. Hong and H. Liu, Weighted jump and variational inequalities for rough operators, J. Funct. Anal., 274 (2018), 2446-2475.  doi: 10.1016/j.jfa.2018.01.009.

[9]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.  doi: 10.1090/S0002-9947-02-03189-6.

[10]

Y. DingG. Hong and H. Liu, Jump and variational inequalities for rough operators, J. Fourier Anal. Appl., 23 (2017), 679-711.  doi: 10.1007/s00041-016-9484-8.

[11]

G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.  doi: 10.1006/jfan.1993.1032.

[12]

R. L. JonesR. KaufmanJ. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Syst., 18 (1998), 889-935.  doi: 10.1017/S0143385798108349.

[13]

R. L. JonesJ. M. Rosenblatt and M. Wierdl, Oscillation inequalities for rectangles, Proc. Am. Math. Soc., 129 (2000), 1349-1358.  doi: 10.1090/S0002-9939-00-06032-9.

[14]

R. L. JonesA. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.  doi: 10.1090/S0002-9947-08-04538-8.

[15]

D. Kurtz, Littlewood-Paley and multipliers theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.

[16]

B. Krause and P. Zorin-Kranich, Weighted and vector-valued variational estimates for ergodic averages, Ergodic Theory Dynam. Syst., 38 (2018), 244-256. 

[17]

H. Liu, Jump estimates for operators associated with polynomials, J. Math. Anal. Appl., 467 (2018), 785-806.  doi: 10.1016/j.jmaa.2018.07.012.

[18]

T. MaJ. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals, J. Funct. Anal., 268 (2015), 376-416.  doi: 10.1016/j.jfa.2014.10.008.

[19]

T. MaJ. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 60 (2017), 1419-1442.  doi: 10.1007/s11425-016-9012-7.

[20]

M. MirekE. M. Stein and B. Trojan, $l^{p}(\mathbb{Z}^{d})$-estimates for discrete operator of Radon type: variational estimates, Invent. Math., 209 (2017), 665-748.  doi: 10.1007/s00222-017-0718-4.

[21]

E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.  doi: 10.1090/S0002-9947-1958-0092943-6.

show all references

References:
[1]

K. F. Andersen and R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math., 69 (1981), 19-31.  doi: 10.4064/sm-69-1-19-31.

[2]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études SCI. Publ. Math., 69 (1989), 5–41. doi: 10.1007/BF02698838.

[3]

A. P. Calderón and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc., 78 (1955), 209-224.  doi: 10.2307/1992955.

[4]

A. P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921.  doi: 10.2307/2372441.

[5]

A. P. Calderón and A. Zygmund, On singular integrals with variable kernels, Applicable Anal., 7 (1978), 221-238.  doi: 10.1080/00036817808839193.

[6]

Y. Chen, Boundedness of the commutator of Marcinkiewicz integral with rough variable kernel, Acta Math. Sin. (Engl. Ser.), 25 (2009), 983-1000.  doi: 10.1007/s10114-009-7681-y.

[7]

Y. ChenY. Ding and R. Li, $L^{2}$-boundedness for maximal commutators with rough variable kernels, Rev. Mat. Iberoamericana, 27 (2011), 361-391.  doi: 10.4171/RMI/640.

[8]

Y. ChenY. DingG. Hong and H. Liu, Weighted jump and variational inequalities for rough operators, J. Funct. Anal., 274 (2018), 2446-2475.  doi: 10.1016/j.jfa.2018.01.009.

[9]

J. T. CampbellR. L. JonesK. Reinhold and M. Wierdl, Oscillation and variation for singular integrals in higher dimensions, Trans. Amer. Math. Soc., 355 (2003), 2115-2137.  doi: 10.1090/S0002-9947-02-03189-6.

[10]

Y. DingG. Hong and H. Liu, Jump and variational inequalities for rough operators, J. Fourier Anal. Appl., 23 (2017), 679-711.  doi: 10.1007/s00041-016-9484-8.

[11]

G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Funct. Anal., 112 (1993), 241-256.  doi: 10.1006/jfan.1993.1032.

[12]

R. L. JonesR. KaufmanJ. M. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Syst., 18 (1998), 889-935.  doi: 10.1017/S0143385798108349.

[13]

R. L. JonesJ. M. Rosenblatt and M. Wierdl, Oscillation inequalities for rectangles, Proc. Am. Math. Soc., 129 (2000), 1349-1358.  doi: 10.1090/S0002-9939-00-06032-9.

[14]

R. L. JonesA. Seeger and J. Wright, Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., 360 (2008), 6711-6742.  doi: 10.1090/S0002-9947-08-04538-8.

[15]

D. Kurtz, Littlewood-Paley and multipliers theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc., 259 (1980), 235-254.  doi: 10.2307/1998156.

[16]

B. Krause and P. Zorin-Kranich, Weighted and vector-valued variational estimates for ergodic averages, Ergodic Theory Dynam. Syst., 38 (2018), 244-256. 

[17]

H. Liu, Jump estimates for operators associated with polynomials, J. Math. Anal. Appl., 467 (2018), 785-806.  doi: 10.1016/j.jmaa.2018.07.012.

[18]

T. MaJ. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals, J. Funct. Anal., 268 (2015), 376-416.  doi: 10.1016/j.jfa.2014.10.008.

[19]

T. MaJ. L. Torrea and Q. Xu, Weighted variation inequalities for differential operators and singular integrals in higher dimensions, Sci. China Math., 60 (2017), 1419-1442.  doi: 10.1007/s11425-016-9012-7.

[20]

M. MirekE. M. Stein and B. Trojan, $l^{p}(\mathbb{Z}^{d})$-estimates for discrete operator of Radon type: variational estimates, Invent. Math., 209 (2017), 665-748.  doi: 10.1007/s00222-017-0718-4.

[21]

E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc., 87 (1958), 159-172.  doi: 10.1090/S0002-9947-1958-0092943-6.

[1]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[2]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[3]

G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure and Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583

[4]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

[5]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[6]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[7]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[8]

Semyon Yakubovich. The heat kernel and Heisenberg inequalities related to the Kontorovich-Lebedev transform. Communications on Pure and Applied Analysis, 2011, 10 (2) : 745-760. doi: 10.3934/cpaa.2011.10.745

[9]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure and Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[10]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1945-1966. doi: 10.3934/dcdss.2020469

[12]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control and Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[13]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[14]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[15]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial and Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[16]

Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583

[17]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial and Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[18]

Barbara Panicucci, Massimo Pappalardo, Mauro Passacantando. On finite-dimensional generalized variational inequalities. Journal of Industrial and Management Optimization, 2006, 2 (1) : 43-53. doi: 10.3934/jimo.2006.2.43

[19]

Dimitri Mugnai. Almost uniqueness result for reversed variational inequalities. Conference Publications, 2007, 2007 (Special) : 751-757. doi: 10.3934/proc.2007.2007.751

[20]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (202)
  • HTML views (141)
  • Cited by (0)

Other articles
by authors

[Back to Top]