• Previous Article
    Classification of non-topological solutions of an elliptic equation arising from self-dual gauged Sigma model
  • CPAA Home
  • This Issue
  • Next Article
    On a free boundary model for three-dimensional mems with a hinged top plate II: Parabolic case
doi: 10.3934/cpaa.2021046

Collective behaviors of the Lohe Hermitian sphere model with inertia

1. 

Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 08826

2. 

Korea Institute for Advanced Study, Hoegiro 85, 02455, Seoul, Republic of Korea

3. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Republic of Korea

 

Dedicated to the celebration of the 80th birthday of Professor Shuxing Chen

Received  September 2020 Revised  February 2021 Published  March 2021

Fund Project: The work of S.-Y.Ha is supported by NRF-2020R1A2C3A01003881, the work of M. Kang was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP)(2016K2A9A2A13003815), and the work of H. Park was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2019R1I1A1A01059585)

We present a second-order extension of the first-order Lohe Hermitian sphere (LHS) model and study its emergent asymptotic dynamics. Our proposed model incorporates an inertial effect as a second-order extension. The inertia term can generate an oscillatory behavior of particle trajectory in a small time interval(initial layer) which causes a technical difficulty for the application of monotonicity-based arguments. For emergent estimates, we employ two-point correlation function which is defined as an inner product between positions of particles. For a homogeneous ensemble with the same frequency matrix, we provide two sufficient frameworks in terms of system parameters and initial data to show that two-point correlation functions tend to the unity which is exactly the same as the complete aggregation. In contrast, for a heterogeneous ensemble with distinct frequency matrices, we provide a sufficient framework in terms of system parameters and initial data, which makes two-point correlation functions be close to unity by increasing the principal coupling strength.

Citation: Seung-Yeal Ha, Myeongju Kang, Hansol Park. Collective behaviors of the Lohe Hermitian sphere model with inertia. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021046
References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d$\bar{o}$oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[3]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562. Google Scholar

[4]

D. Chi, S. H. Choi and S. Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703. doi: 10.1063/1.4878117.  Google Scholar

[5]

Y. P. ChoiS. Y. Ha and S. B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D: Nonlinear Phenomena, 1 (2011), 32-44.  doi: 10.1016/j.physd.2010.08.004.  Google Scholar

[6]

D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain, Phys. D, 226 (2007), 181-196.  doi: 10.1016/j.physd.2006.12.004.  Google Scholar

[7]

S. Y. Ha and D. Kim, A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.  doi: 10.1137/18M1205996.  Google Scholar

[8]

S. Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and their stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.  Google Scholar

[9]

S. Y. Ha, M. Kang and H. Park, Emergent dynamics of the Lohe Hermitian sphere model with frustration, submitted. Google Scholar

[10]

S. Y. Ha and H. Park, Complete aggregation of the Lohe tensor model with the same free flow, J. Math. Phys., 61 (2020), 102702 doi: 10.1063/5.0007292.  Google Scholar

[11]

S. Y. Ha and H. Park, From the Lohe tensor model to the Lohe Hermitian sphere model and emergent dynamics, SIAM J. Appl. Dyn. Syst., 19 (2020), 1312-1342.  doi: 10.1137/19M1288553.  Google Scholar

[12]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[13]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, In International Symposium on Mathematical Problems in Mathematical Physics. Lecture Notes in Theoretical Physics 30 (1975), 420–422.  Google Scholar

[14]

M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301. doi: 10.1088/1751-8113/43/46/465301.  Google Scholar

[15]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101. doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[16]

J. Markdahl, J. Thunberg and J. Gonąlves, Towards almost global synchronization on the Stiefel manifold, To appear in the proceedings of the 57th IEEE Conference on Decision and Control. Miami, FL, USA, 2017. doi: 10.1109/tac.2017.2752799.  Google Scholar

[17]

J. Markdahl, J. Thunberg and J. Gonąlves, High-dimensional Kuramoto models on Stiefel manifolds synchronize complex networks almost globally, Automatica, 113 (2020), 108736. doi: 10.1016/j.automatica.2019.108736.  Google Scholar

[18]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control (2006), 5060–5066. Google Scholar

[19]

C. S. Peskin, Mathematical aspect of heart physiology, Courant Institute of Mathematical Sciences, New York, 1975.  Google Scholar

[20] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[21]

L. M. Ritchie, M. A. Lohe and A. G. Williams, Synchronization of relativistic particles in the hyperbolic Kuramoto model, Chaos, 28 (2018), 053116 doi: 10.1063/1.5021701.  Google Scholar

[22]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[23]

R. Sknepnek and S. Henkes, Active swarms on a sphere, Phys. Rev. E, 2 (2015), 022306. Google Scholar

[24]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[25]

J. ZhangJ. Zhu and C. Qian, On equilibria and consensus of the Lohe model with identical oscillators, SIAM J. Appl. Dyn. Syst., 17 (2018), 1716-1741.  doi: 10.1137/17M112765X.  Google Scholar

[26]

J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Phys. Lett. A, 377 (2013), 2939-2943.  doi: 10.1016/j.physleta.2013.09.010.  Google Scholar

show all references

References:
[1]

J. A. AcebronL. L. BonillaC. J. P. Pérez VicenteF. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.   Google Scholar

[2]

I. Barb$\check{a}$lat, Syst$\grave{e}$mes d$\acute{e}$quations diff$\acute{e}$rentielles d$\bar{o}$oscillations non Lin$\acute{e}$aires, Rev. Math. Pures Appl., 4 (1959), 267-270.   Google Scholar

[3]

J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562. Google Scholar

[4]

D. Chi, S. H. Choi and S. Y. Ha, Emergent behaviors of a holonomic particle system on a sphere, J. Math. Phys., 55 (2014), 052703. doi: 10.1063/1.4878117.  Google Scholar

[5]

Y. P. ChoiS. Y. Ha and S. B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D: Nonlinear Phenomena, 1 (2011), 32-44.  doi: 10.1016/j.physd.2010.08.004.  Google Scholar

[6]

D. Cumin and C. P. Unsworth, Generalizing the Kuramoto model for the study of neuronal synchronization in the brain, Phys. D, 226 (2007), 181-196.  doi: 10.1016/j.physd.2006.12.004.  Google Scholar

[7]

S. Y. Ha and D. Kim, A second-order particle swarm model on a sphere and emergent dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), 80-116.  doi: 10.1137/18M1205996.  Google Scholar

[8]

S. Y. HaD. KimJ. Lee and S. E. Noh, Particle and kinetic models for swarming particles on a sphere and their stability properties, J. Stat. Phys., 174 (2019), 622-655.  doi: 10.1007/s10955-018-2169-8.  Google Scholar

[9]

S. Y. Ha, M. Kang and H. Park, Emergent dynamics of the Lohe Hermitian sphere model with frustration, submitted. Google Scholar

[10]

S. Y. Ha and H. Park, Complete aggregation of the Lohe tensor model with the same free flow, J. Math. Phys., 61 (2020), 102702 doi: 10.1063/5.0007292.  Google Scholar

[11]

S. Y. Ha and H. Park, From the Lohe tensor model to the Lohe Hermitian sphere model and emergent dynamics, SIAM J. Appl. Dyn. Syst., 19 (2020), 1312-1342.  doi: 10.1137/19M1288553.  Google Scholar

[12]

Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69689-3.  Google Scholar

[13]

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, In International Symposium on Mathematical Problems in Mathematical Physics. Lecture Notes in Theoretical Physics 30 (1975), 420–422.  Google Scholar

[14]

M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A, 43 (2010), 465301. doi: 10.1088/1751-8113/43/46/465301.  Google Scholar

[15]

M. A. Lohe, Non-Abelian Kuramoto model and synchronization, J. Phys. A, 42 (2009), 395101. doi: 10.1088/1751-8113/42/39/395101.  Google Scholar

[16]

J. Markdahl, J. Thunberg and J. Gonąlves, Towards almost global synchronization on the Stiefel manifold, To appear in the proceedings of the 57th IEEE Conference on Decision and Control. Miami, FL, USA, 2017. doi: 10.1109/tac.2017.2752799.  Google Scholar

[17]

J. Markdahl, J. Thunberg and J. Gonąlves, High-dimensional Kuramoto models on Stiefel manifolds synchronize complex networks almost globally, Automatica, 113 (2020), 108736. doi: 10.1016/j.automatica.2019.108736.  Google Scholar

[18]

R. Olfati-Saber, Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks, Proc. of the 45th IEEE conference on Decision and Control (2006), 5060–5066. Google Scholar

[19]

C. S. Peskin, Mathematical aspect of heart physiology, Courant Institute of Mathematical Sciences, New York, 1975.  Google Scholar

[20] A. PikovskyM. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.  doi: 10.1017/CBO9780511755743.  Google Scholar
[21]

L. M. Ritchie, M. A. Lohe and A. G. Williams, Synchronization of relativistic particles in the hyperbolic Kuramoto model, Chaos, 28 (2018), 053116 doi: 10.1063/1.5021701.  Google Scholar

[22]

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143 (2000), 1-20.  doi: 10.1016/S0167-2789(00)00094-4.  Google Scholar

[23]

R. Sknepnek and S. Henkes, Active swarms on a sphere, Phys. Rev. E, 2 (2015), 022306. Google Scholar

[24]

A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.   Google Scholar

[25]

J. ZhangJ. Zhu and C. Qian, On equilibria and consensus of the Lohe model with identical oscillators, SIAM J. Appl. Dyn. Syst., 17 (2018), 1716-1741.  doi: 10.1137/17M112765X.  Google Scholar

[26]

J. Zhu, Synchronization of Kuramoto model in a high-dimensional linear space, Phys. Lett. A, 377 (2013), 2939-2943.  doi: 10.1016/j.physleta.2013.09.010.  Google Scholar

[1]

Seung-Yeal Ha, Jinyeong Park, Sang Woo Ryoo. Emergence of phase-locked states for the Winfree model in a large coupling regime. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3417-3436. doi: 10.3934/dcds.2015.35.3417

[2]

Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergence of aggregation in the swarm sphere model with adaptive coupling laws. Kinetic & Related Models, 2019, 12 (2) : 411-444. doi: 10.3934/krm.2019018

[3]

Vladimir Jaćimović, Aladin Crnkić. The General Non-Abelian Kuramoto Model on the 3-sphere. Networks & Heterogeneous Media, 2020, 15 (1) : 111-124. doi: 10.3934/nhm.2020005

[4]

Hyungjin Huh. Remarks on the Schrödinger-Lohe model. Networks & Heterogeneous Media, 2019, 14 (4) : 759-769. doi: 10.3934/nhm.2019030

[5]

Seung-Yeal Ha, Hansol Park. Emergent behaviors of the generalized Lohe matrix model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4227-4261. doi: 10.3934/dcdsb.2020286

[6]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2021, 16 (1) : 91-138. doi: 10.3934/nhm.2021001

[7]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[8]

Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241

[9]

Seung-Yeal Ha, Jaeseung Lee, Zhuchun Li. Emergence of local synchronization in an ensemble of heterogeneous Kuramoto oscillators. Networks & Heterogeneous Media, 2017, 12 (1) : 1-24. doi: 10.3934/nhm.2017001

[10]

Jeremias Epperlein, Stefan Siegmund. Phase-locked trajectories for dynamical systems on graphs. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1827-1844. doi: 10.3934/dcdsb.2013.18.1827

[11]

Woojoo Shim. On the generic complete synchronization of the discrete Kuramoto model. Kinetic & Related Models, 2020, 13 (5) : 979-1005. doi: 10.3934/krm.2020034

[12]

Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba. A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences & Engineering, 2013, 10 (1) : 167-184. doi: 10.3934/mbe.2013.10.167

[13]

Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223

[14]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[15]

Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021104

[16]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[17]

Xiaoxue Zhao, Zhuchun Li. Synchronization of a Kuramoto-like model for power grids with frustration. Networks & Heterogeneous Media, 2020, 15 (3) : 543-553. doi: 10.3934/nhm.2020030

[18]

Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic & Related Models, 2017, 10 (1) : 313-327. doi: 10.3934/krm.2017013

[19]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[20]

Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017

2019 Impact Factor: 1.105

Article outline

[Back to Top]