# American Institute of Mathematical Sciences

doi: 10.3934/cpaa.2021048

## Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies

 1 Center for Partial Differential Equations, School of Mathematical Sciences, East China Normal University, Shanghai 200241, China 2 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China 3 School of Mathematical Sciences, and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China

* Corresponding author

Received  November 2020 Revised  February 2021 Published  March 2021

Fund Project: The research of Aifang Qu is supported by the National Natural Science Foundation of China (NNSFC) under Grants No. 11571357, No. 11871218, and No. 12071298; Hairong Yuan is supported by NNSFC under Grants No. 11871218, No. 12071298, and by the Science and Technology Commission of Shanghai Municipality (STCSM) under Grant No. 18dz2271000

We study steady uniform hypersonic-limit Euler flows passing a finite cylindrically symmetric conical body in the Euclidean space $\mathbb{R}^3$, and its interaction with downstream static gas lying behind the tail of the body. Motivated by Newton's theory of infinite-thin shock layers, we propose and construct Radon measure solutions with density containing Dirac measures supported on surfaces and prove the Newton-Busemann pressure law of hypersonic aerodynamics. It happens that if the pressure of the downstream static gas is quite large, the Radon measure solution terminates at a finite distance from the tail of the body. The main difficulty of the analysis is a correct definition of Radon measure solutions. The results are helpful to understand mathematically some physical phenomena and formulas about hypersonic inviscid flows.

Citation: Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021048
##### References:
 [1] J. D. Jr. Anderson, Modern Compressible Flow: With Historical Perspective, 3$^rd$ edition, McGraw-Hill, 2003. Google Scholar [2] J. D. Jr. Anderson, Hypersonic and High-Temperature Gas Dynamics, 2$^nd$ edition, AIAA, 2006. Google Scholar [3] S. Chen, A free boundary value problem of Euler system arising in supersonic flow past a curved cone, Tohoku Math. J., 54 (2002), 105-120.   Google Scholar [4] S. Chen, Existence of stationary supersonic flows past a pointed body, Arch. Ration. Mech. Anal., 156 (2001), 141-181.  doi: 10.1007/s002050100121.  Google Scholar [5] S. Chen, Z. Geng and D. Li, The existence and stability of conic shock waves, J. Math. Anal. Appl., 277 (2003), 512-532.  doi: 10.1016/S0022-247X(02)00581-4.  Google Scholar [6] S. Chen and D. Li., Supersonic flow past a symmetrically curved cone, Indiana U. Math. J., 49 (2000), 1411-1435.  doi: 10.1512/iumj.2000.49.1928.  Google Scholar [7] S. Chen and D. Li, Conical shock waves for an isentropic Euler system, P. Roy. Soc. Edinb. A., 135 (2005), 1109-1127.  doi: 10.1017/S0308210500004297.  Google Scholar [8] S. Chen and D. Li, Conical shock waves in supersonic flow, J. Differ. Equ., 269 (2020), 595-611.  doi: 10.1016/j.jde.2019.12.018.  Google Scholar [9] S. Chen, Z. Xin and H. Yin, Global shock waves for the supersonic flow past a perturbed cone, Commun. Math. Phys., 228 (2002), 47-84.  doi: 10.1007/s002200200652.  Google Scholar [10] S. Chen and C. Yi, Global solutions for supersonic flow past a delta wing, SIAM J. Math. Anal., 47 (2015), 80-126.  doi: 10.1137/140963157.  Google Scholar [11] G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.  Google Scholar [12] G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D. Nonlinear Phenomena, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039.  Google Scholar [13] H. Cheng and H. Yang, Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow, Acta Appl. Math., 113 (2011), 323-348.  doi: 10.1007/s10440-010-9602-6.  Google Scholar [14] G. G. Chernyi, Introduction to Hypersonic Flow, Academic Press, New York and London, 1961.   Google Scholar [15] D. Cui and H. Yin, Global supersonic conic shock wave for the steady supersonic flow past a cone: polytropic gas, J. Differ. Equ., 246 (2009), 641-669.  doi: 10.1016/j.jde.2008.07.031.  Google Scholar [16] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 2015.   Google Scholar [17] D. Hu and Y. Zhang, Global conical shock wave for the steady supersonic flow past a curved cone, SIAM J. Math. Anal., 51 (2019), 2372-2389.  doi: 10.1137/18M1179924.  Google Scholar [18] F. Huang and Z. Wang, Well posedness for pressureless flow, Commun. Math. Phys., 222 (2001), 117-146.  doi: 10.1007/s002200100506.  Google Scholar [19] Y. Jin, A. Qu and H. Yuan, On two-dimensional steady Hypersonic-limit Euler flows passing ramps and Radon measure solutions of compressible Euler equations, preprint, arXiv: 1909.03624v1. Google Scholar [20] J. Kuang, W. Xiang and Y. Zhang, Hypersonic similarity for the two dimensional steady potential flow with large data, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 37 (2020), 1379-1423.  doi: 10.1016/j.anihpc.2020.05.002.  Google Scholar [21] K. Louie and J. R. Ockendon, Mathematical aspects of the theory of inviscid hypersonic flow, Philosophical Transactions of the Royal Society of London. Series A., 335 (1991), 121-138.  doi: 10.1098/rsta.1991.0039.  Google Scholar [22] M. Nedeljkov, Shadow waves: entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.  doi: 10.1007/s00205-009-0281-2.  Google Scholar [23] A. Paiva, Formation of $\delta$-shock waves in isentropic fluids, Zeitschrift Für Angewandte Mathematik und Physik, 71 (2020), 110. doi: 10.1007/s00033-020-01332-6.  Google Scholar [24] A. Qu, L. Wang and H. Yuan, Radon measure solutions for steady hypersonic-limit Euler flows passing two-dimensional finite non-symmetric obstacles and interactions of free concentration layers, Commun. Math. Sci., to appear. Google Scholar [25] A. Qu and H. Yuan, Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton's sine-squared law, J. Differ. Equ., 269 (2020), 495-522.  doi: 10.1016/j.jde.2019.12.012.  Google Scholar [26] A. Qu, H. Yuan and Q. Zhao, Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge, Zeitschrift Für Angewandte Mathematik und Mechanik, 100 (2020), e201800225. doi: 10.1002/zamm. 201800225.  Google Scholar [27] Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differ. Equ., 247 (2009), 1817-1850.  doi: 10.1016/j.jde.2009.05.010.  Google Scholar [28] Z. Wang and Q. Zhang, The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations, Acta Math. Sci., 32 (2012), 825-841.  doi: 10.1016/S0252-9602(12)60064-2.  Google Scholar

show all references

##### References:
 [1] J. D. Jr. Anderson, Modern Compressible Flow: With Historical Perspective, 3$^rd$ edition, McGraw-Hill, 2003. Google Scholar [2] J. D. Jr. Anderson, Hypersonic and High-Temperature Gas Dynamics, 2$^nd$ edition, AIAA, 2006. Google Scholar [3] S. Chen, A free boundary value problem of Euler system arising in supersonic flow past a curved cone, Tohoku Math. J., 54 (2002), 105-120.   Google Scholar [4] S. Chen, Existence of stationary supersonic flows past a pointed body, Arch. Ration. Mech. Anal., 156 (2001), 141-181.  doi: 10.1007/s002050100121.  Google Scholar [5] S. Chen, Z. Geng and D. Li, The existence and stability of conic shock waves, J. Math. Anal. Appl., 277 (2003), 512-532.  doi: 10.1016/S0022-247X(02)00581-4.  Google Scholar [6] S. Chen and D. Li., Supersonic flow past a symmetrically curved cone, Indiana U. Math. J., 49 (2000), 1411-1435.  doi: 10.1512/iumj.2000.49.1928.  Google Scholar [7] S. Chen and D. Li, Conical shock waves for an isentropic Euler system, P. Roy. Soc. Edinb. A., 135 (2005), 1109-1127.  doi: 10.1017/S0308210500004297.  Google Scholar [8] S. Chen and D. Li, Conical shock waves in supersonic flow, J. Differ. Equ., 269 (2020), 595-611.  doi: 10.1016/j.jde.2019.12.018.  Google Scholar [9] S. Chen, Z. Xin and H. Yin, Global shock waves for the supersonic flow past a perturbed cone, Commun. Math. Phys., 228 (2002), 47-84.  doi: 10.1007/s002200200652.  Google Scholar [10] S. Chen and C. Yi, Global solutions for supersonic flow past a delta wing, SIAM J. Math. Anal., 47 (2015), 80-126.  doi: 10.1137/140963157.  Google Scholar [11] G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.  Google Scholar [12] G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D. Nonlinear Phenomena, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039.  Google Scholar [13] H. Cheng and H. Yang, Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow, Acta Appl. Math., 113 (2011), 323-348.  doi: 10.1007/s10440-010-9602-6.  Google Scholar [14] G. G. Chernyi, Introduction to Hypersonic Flow, Academic Press, New York and London, 1961.   Google Scholar [15] D. Cui and H. Yin, Global supersonic conic shock wave for the steady supersonic flow past a cone: polytropic gas, J. Differ. Equ., 246 (2009), 641-669.  doi: 10.1016/j.jde.2008.07.031.  Google Scholar [16] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 2015.   Google Scholar [17] D. Hu and Y. Zhang, Global conical shock wave for the steady supersonic flow past a curved cone, SIAM J. Math. Anal., 51 (2019), 2372-2389.  doi: 10.1137/18M1179924.  Google Scholar [18] F. Huang and Z. Wang, Well posedness for pressureless flow, Commun. Math. Phys., 222 (2001), 117-146.  doi: 10.1007/s002200100506.  Google Scholar [19] Y. Jin, A. Qu and H. Yuan, On two-dimensional steady Hypersonic-limit Euler flows passing ramps and Radon measure solutions of compressible Euler equations, preprint, arXiv: 1909.03624v1. Google Scholar [20] J. Kuang, W. Xiang and Y. Zhang, Hypersonic similarity for the two dimensional steady potential flow with large data, Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire, 37 (2020), 1379-1423.  doi: 10.1016/j.anihpc.2020.05.002.  Google Scholar [21] K. Louie and J. R. Ockendon, Mathematical aspects of the theory of inviscid hypersonic flow, Philosophical Transactions of the Royal Society of London. Series A., 335 (1991), 121-138.  doi: 10.1098/rsta.1991.0039.  Google Scholar [22] M. Nedeljkov, Shadow waves: entropies and interactions for delta and singular shocks, Arch. Ration. Mech. Anal., 197 (2010), 489-537.  doi: 10.1007/s00205-009-0281-2.  Google Scholar [23] A. Paiva, Formation of $\delta$-shock waves in isentropic fluids, Zeitschrift Für Angewandte Mathematik und Physik, 71 (2020), 110. doi: 10.1007/s00033-020-01332-6.  Google Scholar [24] A. Qu, L. Wang and H. Yuan, Radon measure solutions for steady hypersonic-limit Euler flows passing two-dimensional finite non-symmetric obstacles and interactions of free concentration layers, Commun. Math. Sci., to appear. Google Scholar [25] A. Qu and H. Yuan, Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton's sine-squared law, J. Differ. Equ., 269 (2020), 495-522.  doi: 10.1016/j.jde.2019.12.012.  Google Scholar [26] A. Qu, H. Yuan and Q. Zhao, Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge, Zeitschrift Für Angewandte Mathematik und Mechanik, 100 (2020), e201800225. doi: 10.1002/zamm. 201800225.  Google Scholar [27] Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differ. Equ., 247 (2009), 1817-1850.  doi: 10.1016/j.jde.2009.05.010.  Google Scholar [28] Z. Wang and Q. Zhang, The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations, Acta Math. Sci., 32 (2012), 825-841.  doi: 10.1016/S0252-9602(12)60064-2.  Google Scholar
The upstream hypersonic-limit flow is separated from the downstream static gas by an axially-symmetric free concentration interface
 [1] Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021062 [2] Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 [3] Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021 [4] Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021128 [5] Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 [6] Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 [7] Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 [8] Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 [9] Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 [10] Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 [11] Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 [12] Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019 [13] Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 [14] Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 [15] Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $O(n)$ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021082 [16] Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 [17] Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 [18] Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 [19] Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021 [20] Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.105

## Tools

Article outline

Figures and Tables