• Previous Article
    On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations
  • CPAA Home
  • This Issue
  • Next Article
    Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential
doi: 10.3934/cpaa.2021049

Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law

1. 

School of Mathematics and Statistics and Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, China

2. 

College of Mathematics, Sichuan University, Chengdu 610065, China

* Corresponding author

Dedicated to Professor Shuxing Chen on the occasion of his 80th birthday

Received  December 2020 Revised  February 2021 Early access  March 2021

Fund Project: Lin He was supported by the National Natural Science Foundation of China under contract 12001388 and the Fundamental Research Funds for the Central Universities under contract YJ201962 and the Sichuan Youth Science and Technology Foundation under contract 2021JDTD0024. Huijiang Zhao was supported by two grants from the National Natural Science Foundation of China under contracts 11731008 and 11671309, respectively

This paper is concerned with the time-asymptotically nonlinear stability of rarefaction waves to the Cauchy problem and the initial-boundary value problem in the half space with impermeable wall boundary condition for a scalar conservation laws with an artificial heat flux satisfying Cattaneo's law. In our results, although the $ L^2\cap L^\infty- $norm of the initial perturbation is assumed to be small, the $ H^1- $norm of the first order derivative of the initial perturbation with respect to the spatial variable can indeed be large. Moreover the far fields of the artificial heat flux can be different. Our analysis is based on the $ L^2 $ energy method.

Citation: Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021049
References:
[1]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[2]

H. Freistuhler and D. Serre, $L^1$ stability of shock waves in scalar viscous conservation laws, Commun. Pure Appl. Math., 51 (1998), 291-301.  doi: 10.1002/(SICI)1097-0312(199803)51:3<291::AID-CPA4>3.3.CO;2-S.  Google Scholar

[3]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605.   Google Scholar

[4]

Y. Hu and R. Racke, Compressible Navier-Stokes equations with hyperbolic heat conduction, J. Hyperbolic Differ. Equ., 13 (2016), 233-247.  doi: 10.1142/S0219891616500077.  Google Scholar

[5]

E. Harabetian, Rarefactions and large time behavior for parabolic equations and monotone schemes, Commun. Math. Phys., 114 (1988), 527-536.   Google Scholar

[6]

Y. Hattori and K. Nishihara, A note on the stability of the rarefaction wave of the Burgers equation, Japan J. Indust. Appl. Math., 8 (1991), 85-96.  doi: 10.1007/BF03167186.  Google Scholar

[7]

A. M. Il'in and O. A. Oleinik, Asymptotic behavior of solutions of the Cauchy problem for some quasilinear equations for large values of the time, Mat. Sb. (N.S.), 51 (1960), 191-216.   Google Scholar

[8]

S. Kawashima and K. Kurata, Hardy type inequality and application to the stability of degenerate stationary waves, J. Funct. Anal., 257 (2009), 1-19.  doi: 10.1016/j.jfa.2009.04.003.  Google Scholar

[9]

S. KawashimaT. Yanagisawa and Y. Shizuta, Mixed problems for quasilinear symmetric hyperbolic systems, Proc. Japan Acad., 63 (1987), 243-246.   Google Scholar

[10]

T. P. LiuA. Matsumura and K. Nishihara, Behavior of solutions for the Burgers equations with boundary corresponding to rarefaction waves, SIAM. J. Math. Anal., 29 (1998), 293-308.  doi: 10.1137/S0036141096306005.  Google Scholar

[11]

T. P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect, J. Differ. Equ., 133 (1997), 296-320.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[12]

T. P. Liu and S. H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Ration. Mech. Anal., 139 (1997), 57-82.  doi: 10.1007/s002050050047.  Google Scholar

[13]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[14]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.  doi: 10.1007/BF03167088.  Google Scholar

[15]

A. Matsumura and K. Nishihara, Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas, Commun. Math. Phys., 144 (1992), 325-335.   Google Scholar

[16]

M. Mei, Stability of shock profiles for nonconvex scalar viscous conservation laws, Math. Models Methods Appl. Sci., 5 (1995), 279-296.  doi: 10.1142/S0218202595000188.  Google Scholar

[17]

K. NakamuraT. Nakamura and S. Kawashima, Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws, Kinet. Relat. Models, 12 (2019), 923-944.  doi: 10.3934/krm.2019035.  Google Scholar

[18]

T. Nakamura, Asymptotic decay toward the rarefaction waves of solutions for viscous conservation laws in a one dimensional half space, SIAM J. Math. Anal., 34 (2003), 1308-1317.  doi: 10.1137/S003614100240693X.  Google Scholar

[19]

T. Nakamura and S. Kawashima, Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law, Kinet. Relat. Models, 11 (2018), 795–819. doi: 10.3934/krm. 2018032.  Google Scholar

[20]

K. Nishihara, Boundary effect on a stationary viscous shock wave for scalar viscous conservation laws, J. Math. Anal. Appl., 255 (2001), 535-550.  doi: 10.1006/jmaa.2000.7255.  Google Scholar

[21]

K. Nishihara and H. J. Zhao, Convergence rates to viscous shock profile for general scalar viscous conservation laws with large initial disturbance, J. Math. Soc. Japan, 54 (2002), 447-466.  doi: 10.2969/jmsj/05420447.  Google Scholar

[22]

R. Racke, Thermoelasticity with second sound–exponential stability in linear and nonlinear 1-d, Math. Methods Appl. Sci., 25 (2002), 409-441.  doi: 10.1002/mma.298.  Google Scholar

[23]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Commun. Math. Phys., 104 (1986), 49-75.   Google Scholar

[24]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^nd$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[25]

W. A. Strauss, Decay and asymptotics for $\Box u=F(u)$, J. Funct. Anal., 2 (1968), 409-457.  doi: 10.1016/0022-1236(68)90004-9.  Google Scholar

[26]

L. C. Tsai, Viscous shock propagation with boundary effect, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 1-25.   Google Scholar

[27]

Y. UedaT. Nakamura and and S. Kawashima, Stability of degenerate stationary waves for viscous gases, Arch. Ration. Mech. Anal., 198 (2010), 735-762.  doi: 10.1007/s00205-010-0369-8.  Google Scholar

show all references

References:
[1]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.  doi: 10.1007/s00205-009-0220-2.  Google Scholar

[2]

H. Freistuhler and D. Serre, $L^1$ stability of shock waves in scalar viscous conservation laws, Commun. Pure Appl. Math., 51 (1998), 291-301.  doi: 10.1002/(SICI)1097-0312(199803)51:3<291::AID-CPA4>3.3.CO;2-S.  Google Scholar

[3]

L. Hsiao and T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599-605.   Google Scholar

[4]

Y. Hu and R. Racke, Compressible Navier-Stokes equations with hyperbolic heat conduction, J. Hyperbolic Differ. Equ., 13 (2016), 233-247.  doi: 10.1142/S0219891616500077.  Google Scholar

[5]

E. Harabetian, Rarefactions and large time behavior for parabolic equations and monotone schemes, Commun. Math. Phys., 114 (1988), 527-536.   Google Scholar

[6]

Y. Hattori and K. Nishihara, A note on the stability of the rarefaction wave of the Burgers equation, Japan J. Indust. Appl. Math., 8 (1991), 85-96.  doi: 10.1007/BF03167186.  Google Scholar

[7]

A. M. Il'in and O. A. Oleinik, Asymptotic behavior of solutions of the Cauchy problem for some quasilinear equations for large values of the time, Mat. Sb. (N.S.), 51 (1960), 191-216.   Google Scholar

[8]

S. Kawashima and K. Kurata, Hardy type inequality and application to the stability of degenerate stationary waves, J. Funct. Anal., 257 (2009), 1-19.  doi: 10.1016/j.jfa.2009.04.003.  Google Scholar

[9]

S. KawashimaT. Yanagisawa and Y. Shizuta, Mixed problems for quasilinear symmetric hyperbolic systems, Proc. Japan Acad., 63 (1987), 243-246.   Google Scholar

[10]

T. P. LiuA. Matsumura and K. Nishihara, Behavior of solutions for the Burgers equations with boundary corresponding to rarefaction waves, SIAM. J. Math. Anal., 29 (1998), 293-308.  doi: 10.1137/S0036141096306005.  Google Scholar

[11]

T. P. Liu and K. Nishihara, Asymptotic behavior for scalar viscous conservation laws with boundary effect, J. Differ. Equ., 133 (1997), 296-320.  doi: 10.1006/jdeq.1996.3217.  Google Scholar

[12]

T. P. Liu and S. H. Yu, Propagation of a stationary shock layer in the presence of a boundary, Arch. Ration. Mech. Anal., 139 (1997), 57-82.  doi: 10.1007/s002050050047.  Google Scholar

[13]

A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), 645-666.  doi: 10.4310/MAA.2001.v8.n4.a14.  Google Scholar

[14]

A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.  doi: 10.1007/BF03167088.  Google Scholar

[15]

A. Matsumura and K. Nishihara, Global stability of the rarefaction waves of a one-dimensional model system for compressible viscous gas, Commun. Math. Phys., 144 (1992), 325-335.   Google Scholar

[16]

M. Mei, Stability of shock profiles for nonconvex scalar viscous conservation laws, Math. Models Methods Appl. Sci., 5 (1995), 279-296.  doi: 10.1142/S0218202595000188.  Google Scholar

[17]

K. NakamuraT. Nakamura and S. Kawashima, Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws, Kinet. Relat. Models, 12 (2019), 923-944.  doi: 10.3934/krm.2019035.  Google Scholar

[18]

T. Nakamura, Asymptotic decay toward the rarefaction waves of solutions for viscous conservation laws in a one dimensional half space, SIAM J. Math. Anal., 34 (2003), 1308-1317.  doi: 10.1137/S003614100240693X.  Google Scholar

[19]

T. Nakamura and S. Kawashima, Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law, Kinet. Relat. Models, 11 (2018), 795–819. doi: 10.3934/krm. 2018032.  Google Scholar

[20]

K. Nishihara, Boundary effect on a stationary viscous shock wave for scalar viscous conservation laws, J. Math. Anal. Appl., 255 (2001), 535-550.  doi: 10.1006/jmaa.2000.7255.  Google Scholar

[21]

K. Nishihara and H. J. Zhao, Convergence rates to viscous shock profile for general scalar viscous conservation laws with large initial disturbance, J. Math. Soc. Japan, 54 (2002), 447-466.  doi: 10.2969/jmsj/05420447.  Google Scholar

[22]

R. Racke, Thermoelasticity with second sound–exponential stability in linear and nonlinear 1-d, Math. Methods Appl. Sci., 25 (2002), 409-441.  doi: 10.1002/mma.298.  Google Scholar

[23]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Commun. Math. Phys., 104 (1986), 49-75.   Google Scholar

[24]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^nd$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[25]

W. A. Strauss, Decay and asymptotics for $\Box u=F(u)$, J. Funct. Anal., 2 (1968), 409-457.  doi: 10.1016/0022-1236(68)90004-9.  Google Scholar

[26]

L. C. Tsai, Viscous shock propagation with boundary effect, Bull. Inst. Math. Acad. Sin. (N.S.), 6 (2011), 1-25.   Google Scholar

[27]

Y. UedaT. Nakamura and and S. Kawashima, Stability of degenerate stationary waves for viscous gases, Arch. Ration. Mech. Anal., 198 (2010), 735-762.  doi: 10.1007/s00205-010-0369-8.  Google Scholar

[1]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[2]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[3]

Pedro Roberto de Lima, Hugo D. Fernández Sare. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo's law. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3575-3596. doi: 10.3934/cpaa.2020156

[4]

Alain Miranville. Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1971-1987. doi: 10.3934/cpaa.2014.13.1971

[5]

Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler system. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2911-2943. doi: 10.3934/dcds.2018125

[6]

Ahmad Makki, Alain Miranville, Georges Sadaka. On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1341-1365. doi: 10.3934/dcdsb.2019019

[7]

Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2145-2171. doi: 10.3934/cpaa.2013.12.2145

[8]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[9]

Kim Dang Phung. Energy decay for Maxwell's equations with Ohm's law in partially cubic domains. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2229-2266. doi: 10.3934/cpaa.2013.12.2229

[10]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic & Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[11]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[12]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[13]

Huijiang Zhao, Yinchuan Zhao. Convergence to strong nonlinear rarefaction waves for global smooth solutions of $p-$system with relaxation. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1243-1262. doi: 10.3934/dcds.2003.9.1243

[14]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[15]

JÓzsef Balogh, Hoi Nguyen. A general law of large permanent. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5285-5297. doi: 10.3934/dcds.2017229

[16]

Claudia Valls. Stability of some waves in the Boussinesq system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 929-939. doi: 10.3934/cpaa.2006.5.929

[17]

Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246

[18]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[19]

Sergio Frigeri. Asymptotic behavior of a hyperbolic system arising in ferroelectricity. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1393-1414. doi: 10.3934/cpaa.2008.7.1393

[20]

Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (43)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]