-
Previous Article
On a supersonic-sonic patch arising from the frankl problem in transonic flows
- CPAA Home
- This Issue
-
Next Article
Multiple solutions for nonlinear cone degenerate elliptic equations
Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces
Center for Promotion of International Education and Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan |
This paper is devoted to studying stochastic semilinear evolution equations in Banach spaces of M-type 2. First, we prove existence, uniqueness and regularity of strict solutions. Then, we give an application to stochastic partial differential equations.
References:
[1] |
Z. Brzeźniak,
Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal., 4 (1995), 1-45.
doi: 10.1007/BF01048965. |
[2] |
Z. Brzeźniak,
On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.
doi: 10.1080/17442509708834122. |
[3] |
R. F. Curtain and P. L. Falb,
Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.
doi: 10.1016/0022-0396(71)90004-0. |
[4] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[5] |
E. Dettweiler,
On the martingale problem for Banach space valued stochastic differential equations, J. Theoret. Probab., 2 (1989), 159-191.
doi: 10.1007/BF01053408. |
[6] |
M. Hairer, An introduction to stochastic PDEs, preprint, (2009) arXiv: 0907.4178. Google Scholar |
[7] |
B. H. Haak and J. M. A. M. van Neerven,
Uniformly $\gamma$-radonifying families of operators and the stochastic Weiss conjecture, Oper. Matrices, 6 (2012), 767-792.
doi: 10.7153/oam-06-50. |
[8] |
O. Martin, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 63 pp. Google Scholar |
[9] |
G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis, Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986,167–241.
doi: 10.1007/BFb0076302. |
[10] |
T. V. Tạ,
Existence results for linear evolution equations of parabolic type, Commun. Pure Appl. Anal., 17 (2018), 751-785.
doi: 10.3934/cpaa.2018039. |
[11] |
T. V. Tạ,
Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: strict solutions and maximal regularity, Discrete Contin. Dyn. Syst., 37 (2017), 4507-4542.
doi: 10.3934/dcds.2017193. |
[12] |
T. V. Tạ,
Note on abstract stochastic semilinear evolution equations, J. Korean Math. Soc., 54 (2017), 909-943.
doi: 10.4134/JKMS.j160311. |
[13] |
T. V. Tạ, Y. Yamamoto and A. Yagi,
Strict solutions to stochastic linear evolution equations in M-type 2 Banach spaces, Funkcial. Ekvac., 61 (2018), 191-217.
doi: 10.1619/fesi.61.191. |
[14] |
J. M. A. M. van Neerven, M. C. Veraar and L. Weis,
Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255 (2008), 940-993.
doi: 10.1016/j.jfa.2008.03.015. |
[15] |
J. M. A. M. van Neerven, M. C. Veraar and L. Weis,
Stochastic maximal $L^p$-regularity, Ann. Probab., 40 (2012), 788-812.
doi: 10.1214/10-AOP626. |
[16] |
A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04631-5. |
show all references
References:
[1] |
Z. Brzeźniak,
Stochastic partial differential equations in M-type 2 Banach spaces, Potential Anal., 4 (1995), 1-45.
doi: 10.1007/BF01048965. |
[2] |
Z. Brzeźniak,
On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.
doi: 10.1080/17442509708834122. |
[3] |
R. F. Curtain and P. L. Falb,
Stochastic differential equations in Hilbert space, J. Differential Equations, 10 (1971), 412-430.
doi: 10.1016/0022-0396(71)90004-0. |
[4] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511666223.![]() ![]() |
[5] |
E. Dettweiler,
On the martingale problem for Banach space valued stochastic differential equations, J. Theoret. Probab., 2 (1989), 159-191.
doi: 10.1007/BF01053408. |
[6] |
M. Hairer, An introduction to stochastic PDEs, preprint, (2009) arXiv: 0907.4178. Google Scholar |
[7] |
B. H. Haak and J. M. A. M. van Neerven,
Uniformly $\gamma$-radonifying families of operators and the stochastic Weiss conjecture, Oper. Matrices, 6 (2012), 767-792.
doi: 10.7153/oam-06-50. |
[8] |
O. Martin, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 63 pp. Google Scholar |
[9] |
G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis, Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986,167–241.
doi: 10.1007/BFb0076302. |
[10] |
T. V. Tạ,
Existence results for linear evolution equations of parabolic type, Commun. Pure Appl. Anal., 17 (2018), 751-785.
doi: 10.3934/cpaa.2018039. |
[11] |
T. V. Tạ,
Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: strict solutions and maximal regularity, Discrete Contin. Dyn. Syst., 37 (2017), 4507-4542.
doi: 10.3934/dcds.2017193. |
[12] |
T. V. Tạ,
Note on abstract stochastic semilinear evolution equations, J. Korean Math. Soc., 54 (2017), 909-943.
doi: 10.4134/JKMS.j160311. |
[13] |
T. V. Tạ, Y. Yamamoto and A. Yagi,
Strict solutions to stochastic linear evolution equations in M-type 2 Banach spaces, Funkcial. Ekvac., 61 (2018), 191-217.
doi: 10.1619/fesi.61.191. |
[14] |
J. M. A. M. van Neerven, M. C. Veraar and L. Weis,
Stochastic evolution equations in UMD Banach spaces, J. Funct. Anal., 255 (2008), 940-993.
doi: 10.1016/j.jfa.2008.03.015. |
[15] |
J. M. A. M. van Neerven, M. C. Veraar and L. Weis,
Stochastic maximal $L^p$-regularity, Ann. Probab., 40 (2012), 788-812.
doi: 10.1214/10-AOP626. |
[16] |
A. Yagi, Abstract Parabolic Evolution Equations and their Applications, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04631-5. |
[1] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[2] |
K. Ravikumar, Manil T. Mohan, A. Anguraj. Approximate controllability of a non-autonomous evolution equation in Banach spaces. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 461-485. doi: 10.3934/naco.2020038 |
[3] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[4] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383 |
[5] |
Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211 |
[6] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[7] |
Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027 |
[8] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[9] |
Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044 |
[10] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[11] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[12] |
Zhaoqiang Ge. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021009 |
[13] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[14] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[15] |
Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250 |
[16] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[17] |
Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021104 |
[18] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[19] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021026 |
[20] |
Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]