doi: 10.3934/cpaa.2021051

Forward-backward approximation of nonlinear semigroups in finite and infinite horizon

1. 

University of Paris-Saclay, CentraleSuplec, OPIS, Inria Saclay 91190, Gif-sur-Yvette, France

2. 

Departamento de Ingeniería Matemática & , Centro de Modelamiento Matemático (CNRS IRL2807)

3. 

FCFM, Universidad de Chile, Beauchef 851, Santiago, Chile

4. 

Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Bernoulliborg, Nijenborgh 9, 9747 AG Groningen, The Netherlands

* Corresponding author: Juan Peypouquet

Received  August 2020 Revised  January 2021 Published  March 2021

Fund Project: Supported by FONDECYT Grant 1181179, CMM-Conicyt PIA AFB170001, ECOS-CONICYT Grant C18E04 and CONICYT-PFCHA/DOCTORADO NACIONAL/2016 21160994

This work is concerned with evolution equations and their forward-backward discretizations, and aims at building bridges between differential equations and variational analysis. Our first contribution is an estimation for the distance between iterates of sequences generated by forward-backward schemes, useful in the convergence and robustness analysis of iterative algorithms of widespread use in numerical optimization and variational inequalities. Our second contribution is the approximation, on a bounded time frame, of the solutions of evolution equations governed by accretive (monotone) operators with an additive structure, by trajectories constructed by interpolating forward-backward sequences. This provides a short, simple and self-contained proof of existence and regularity for such solutions; unifies and extends a number of classical results; and offers a guide for the development of numerical methods. Finally, our third contribution is a mathematical methodology that allows us to deduce the behavior, as the number of iterations tends to $ +\infty $, of sequences generated by forward-backward algorithms, based solely on the knowledge of the behavior, as time goes to $ +\infty $, of the solutions of differential inclusions, and viceversa.

Citation: Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021051
References:
[1]

F. Álvarez and J. Peypouquet, Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces, Discrete Contin. Dyn. Syst., 25 (2009), no. 4, 1109–1128. doi: 10.3934/dcds.2009.25.1109.  Google Scholar

[2]

F. Álvarez and J. Peypouquet, Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces, Nonlinear Anal., 73 (2010), no. 9, 3018–3033 doi: 10.1016/j.na.2010.06.070.  Google Scholar

[3]

F. Álvarez and J. Peypouquet, A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions, Nonlinear Anal., 74 (2011), no. 11, 3440–3444 doi: 10.1016/j.na.2011.02.030.  Google Scholar

[4]

J. B. Baillon, Un exemple concernant le comportement asymptotique de la solution du problème ${du/dt}+{\partial}\varphi(u){\ni}0$, J. Functional Analysis, 28 (1978), 369-376.  doi: 10.1016/0022-1236(78)90093-9.  Google Scholar

[5]

P. Bénilan, Équations d'Évolution san un Espace de Banach Quelconque et Applications, Thése, Orsay, 1972. Google Scholar

[6]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[7]

M. G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418.  doi: 10.1016/0022-1236(69)90032-9.  Google Scholar

[8]

A. Contreras and J. Peypouquet, Asymptotic equivalence of evolution equations governed by cocoercive operators and their forward discretizations, J. Optim. Theory Appl., 182 (2019), no. 1, 30–48. doi: 10.1007/s10957-018-1332-3.  Google Scholar

[9]

O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Opt., 29 (1991), 403-419.  doi: 10.1137/0329022.  Google Scholar

[10]

E. Hille, On the generation of semi-groups and the theory of conjugate functions. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar, Proc. Roy. Physiog. Soc. Lund., 21, (1952). no. 14, 13 pp.  Google Scholar

[11]

T. Kato, Nonlinear semigroups and evolution equations, J. Math Soc. Japan, 19 (1973), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[12]

T. Kato, On the Trotter-Lie product formula, Proc. Japan Acad., 50 (1974), 694-698.  doi: 10.3792/pja/1195518790.  Google Scholar

[13]

Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), 640-665.  doi: 10.2969/jmsj/02740640.  Google Scholar

[14]

K. KobayasiY. Kobayashi and S. Oharu, Nonlinear evolution operators in Banach spaces, Osaka J. Math., 21 (1984), 281-310.   Google Scholar

[15]

G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679-698.  doi: 10.2140/pjm.1961.11.679.  Google Scholar

[16]

B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 4 (1970), 154–158.  Google Scholar

[17]

I. Miyadera and K. Kobayasi, On the asymptotic behavior of almost-orbits of nonlinear contractions in Banach spaces, Nonlinear Anal., 6 (1982), 349-365.  doi: 10.1016/0362-546X(82)90021-9.  Google Scholar

[18]

O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Israel J. Math., 32 (1979), 44-58.  doi: 10.1007/BF02761184.  Google Scholar

[19]

G. B. Passty, Preservation of the asymptotic behavior of a nonlinear contraction semigroup by backward differencing, Houston J. Math., 7 (1981), 103-110.   Google Scholar

[20]

J. Peypouquet, Convex Optimization in Normed Spaces. Theory, Methods and Examples, Springer, Cham, 2015. doi: 10.1007/978-3-319-13710-0.  Google Scholar

[21]

J. Peypouquet and S. Sorin, Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and discrete time, J. Convex Anal., 17 (2010), 1113-1163.   Google Scholar

[22]

S. Rasmussen, Nonlinear semigroups, evolution equations and product integral representations, Various Publication Series, Vol. 20, Aarhus Universitet, (1971/72). Google Scholar

[23]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[24]

H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc., 10 (1959), 545-551.  doi: 10.1090/S0002-9939-1959-0108732-6.  Google Scholar

[25]

P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446.  doi: 10.1137/S0363012998338806.  Google Scholar

[26]

T. Sugimoto and M. Koizumi, On the asymptotic behaviour of a nonlinear contraction semigroup and the resolvente iteration, Proc. Japan Acad. Ser. A. Math. Sci., 59 (1983), no. 6,238–240. doi: 10.3792/pjaa.59.238.  Google Scholar

[27]

G. Vigeral, Evolution equations in discrete and continuous time for nonexpansive opreators in Banach spaces, ESAIM, Control Optim. Calc. Var., 16 (2010), 809-832.  doi: 10.1051/cocv/2009026.  Google Scholar

[28]

H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.  doi: 10.1016/0362-546X(91)90200-K.  Google Scholar

[29]

K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. Japan, 1 (1948), 15-21.  doi: 10.2969/jmsj/00110015.  Google Scholar

show all references

References:
[1]

F. Álvarez and J. Peypouquet, Asymptotic equivalence and Kobayashi-type estimates for nonautonomous monotone operators in Banach spaces, Discrete Contin. Dyn. Syst., 25 (2009), no. 4, 1109–1128. doi: 10.3934/dcds.2009.25.1109.  Google Scholar

[2]

F. Álvarez and J. Peypouquet, Asymptotic almost-equivalence of Lipschitz evolution systems in Banach spaces, Nonlinear Anal., 73 (2010), no. 9, 3018–3033 doi: 10.1016/j.na.2010.06.070.  Google Scholar

[3]

F. Álvarez and J. Peypouquet, A unified approach to the asymptotic almost-equivalence of evolution systems without Lipschitz conditions, Nonlinear Anal., 74 (2011), no. 11, 3440–3444 doi: 10.1016/j.na.2011.02.030.  Google Scholar

[4]

J. B. Baillon, Un exemple concernant le comportement asymptotique de la solution du problème ${du/dt}+{\partial}\varphi(u){\ni}0$, J. Functional Analysis, 28 (1978), 369-376.  doi: 10.1016/0022-1236(78)90093-9.  Google Scholar

[5]

P. Bénilan, Équations d'Évolution san un Espace de Banach Quelconque et Applications, Thése, Orsay, 1972. Google Scholar

[6]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[7]

M. G. Crandall and A. Pazy, Semi-groups of nonlinear contractions and dissipative sets, J. Functional Analysis, 3 (1969), 376-418.  doi: 10.1016/0022-1236(69)90032-9.  Google Scholar

[8]

A. Contreras and J. Peypouquet, Asymptotic equivalence of evolution equations governed by cocoercive operators and their forward discretizations, J. Optim. Theory Appl., 182 (2019), no. 1, 30–48. doi: 10.1007/s10957-018-1332-3.  Google Scholar

[9]

O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Opt., 29 (1991), 403-419.  doi: 10.1137/0329022.  Google Scholar

[10]

E. Hille, On the generation of semi-groups and the theory of conjugate functions. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar, Proc. Roy. Physiog. Soc. Lund., 21, (1952). no. 14, 13 pp.  Google Scholar

[11]

T. Kato, Nonlinear semigroups and evolution equations, J. Math Soc. Japan, 19 (1973), 508-520.  doi: 10.2969/jmsj/01940508.  Google Scholar

[12]

T. Kato, On the Trotter-Lie product formula, Proc. Japan Acad., 50 (1974), 694-698.  doi: 10.3792/pja/1195518790.  Google Scholar

[13]

Y. Kobayashi, Difference approximation of Cauchy problems for quasi-dissipative operators and generation of nonlinear semigroups, J. Math. Soc. Japan, 27 (1975), 640-665.  doi: 10.2969/jmsj/02740640.  Google Scholar

[14]

K. KobayasiY. Kobayashi and S. Oharu, Nonlinear evolution operators in Banach spaces, Osaka J. Math., 21 (1984), 281-310.   Google Scholar

[15]

G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679-698.  doi: 10.2140/pjm.1961.11.679.  Google Scholar

[16]

B. Martinet, Régularisation d'inéquations variationnelles par approximations successives, Rev. Française Informat. Recherche Opérationnelle, 4 (1970), 154–158.  Google Scholar

[17]

I. Miyadera and K. Kobayasi, On the asymptotic behavior of almost-orbits of nonlinear contractions in Banach spaces, Nonlinear Anal., 6 (1982), 349-365.  doi: 10.1016/0362-546X(82)90021-9.  Google Scholar

[18]

O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Israel J. Math., 32 (1979), 44-58.  doi: 10.1007/BF02761184.  Google Scholar

[19]

G. B. Passty, Preservation of the asymptotic behavior of a nonlinear contraction semigroup by backward differencing, Houston J. Math., 7 (1981), 103-110.   Google Scholar

[20]

J. Peypouquet, Convex Optimization in Normed Spaces. Theory, Methods and Examples, Springer, Cham, 2015. doi: 10.1007/978-3-319-13710-0.  Google Scholar

[21]

J. Peypouquet and S. Sorin, Evolution equations for maximal monotone operators: Asymptotic analysis in continuous and discrete time, J. Convex Anal., 17 (2010), 1113-1163.   Google Scholar

[22]

S. Rasmussen, Nonlinear semigroups, evolution equations and product integral representations, Various Publication Series, Vol. 20, Aarhus Universitet, (1971/72). Google Scholar

[23]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[24]

H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc., 10 (1959), 545-551.  doi: 10.1090/S0002-9939-1959-0108732-6.  Google Scholar

[25]

P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431-446.  doi: 10.1137/S0363012998338806.  Google Scholar

[26]

T. Sugimoto and M. Koizumi, On the asymptotic behaviour of a nonlinear contraction semigroup and the resolvente iteration, Proc. Japan Acad. Ser. A. Math. Sci., 59 (1983), no. 6,238–240. doi: 10.3792/pjaa.59.238.  Google Scholar

[27]

G. Vigeral, Evolution equations in discrete and continuous time for nonexpansive opreators in Banach spaces, ESAIM, Control Optim. Calc. Var., 16 (2010), 809-832.  doi: 10.1051/cocv/2009026.  Google Scholar

[28]

H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.  doi: 10.1016/0362-546X(91)90200-K.  Google Scholar

[29]

K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators, J. Math. Soc. Japan, 1 (1948), 15-21.  doi: 10.2969/jmsj/00110015.  Google Scholar

[1]

Krzysztof Stempak. Spectral properties of ordinary differential operators admitting special decompositions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021054

[2]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[3]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[4]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[5]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[6]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[7]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002

[8]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[9]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[10]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[11]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3343-3366. doi: 10.3934/dcds.2020408

[12]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021070

[13]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[14]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[16]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[17]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[18]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[19]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[20]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (28)
  • HTML views (66)
  • Cited by (0)

Other articles
by authors

[Back to Top]