-
Previous Article
Multiple solutions for nonlinear cone degenerate elliptic equations
- CPAA Home
- This Issue
-
Next Article
Forward-backward approximation of nonlinear semigroups in finite and infinite horizon
Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay
1. | Faculty of Science, Beijing University of Technology, Ping Le Yuan 100, Chaoyang District, Beijing, 100124, China |
2. | Department of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China |
This paper is concerned with the pullback dynamics and asymptotic stability for a 3D Brinkman-Forchheimer equation with infinite delay. The well-posedness of weak solution to the 3D Brinkman-Forchheimer flow with infinite delay is investigated in the weighted space $ C_\kappa(H) $ firstly, then the pullback attractors are presented for the process of weak solution. Moreover, the existence of global attractor and the exponential stability analysis of stationary solutions are shown, which is based on the estimate of corresponding steady state equation.
References:
[1] |
V. Barbu and S. S. Sritharan,
Navier-Stokes equation with hereditary viscosity, Z. Angew. Math. Phys., 54 (2003), 449-461.
doi: 10.1007/s00033-003-1087-y. |
[2] |
T. Caraballo and J. A. Langa,
On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Continuous Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513.
|
[3] |
T. Caraballo, G. Łukaszewicz and J. Real,
Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[4] |
T. Caraballo and J. Real,
Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[5] |
T. Caraballo and J. Real,
Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[6] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[7] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[8] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[9] |
E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[10] |
J. Garcia-Luengo and P. Marin-Rubio,
Attractors for a double time-delayed 2D Navier-Stokes model, Discrete Contin. Dyn. Syst., 34 (2014), 4085-4105.
doi: 10.3934/dcds.2014.34.4085. |
[11] |
J. K. Hale and J. Kato,
Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
|
[12] |
Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[13] |
V. K. Kalantarov and S. Zelik,
Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.
doi: 10.3934/cpaa.2012.11.2037. |
[14] |
J. R. Kang and J. Y. Park,
Uniform attractors for non-autonomous Brinkman-Forchheimer equations with delay, Acta Math. Sin. (Engl. Ser.), 29 (2013), 993-1006.
doi: 10.1007/s10114-013-1392-0. |
[15] |
L. Li, X. Yang, X. Li, X. Yan and Y. Lu,
Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.
doi: 10.3233/ASY-181512. |
[16] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[17] |
Y. Liu,
Convergence and continuous dependence for the Brinkman-Forchheimer equations, Math. Comput. Modelling, 49 (2009), 1401-1415.
doi: 10.1016/j.mcm.2008.11.010. |
[18] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009) 3956–3963.
doi: 10.1016/j.na.2009.02.065. |
[19] |
P. Marín-Rubio, J. Real and J. Valero,
Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.
doi: 10.1016/j.na.2010.11.008. |
[20] |
D. A. Nield,
The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12 (1991), 269-272.
doi: 10.1016/0142-727X(91)90062-Z. |
[21] |
Y. Ouyang and L. Yan,
A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059.
doi: 10.1016/j.na.2008.02.121. |
[22] |
L. E. Payne and B. Straughan,
Convergence and continuous dependence for the Brinkman–Forchheimer equations, Stud. Appl. Math., 102 (1999), 419-439.
doi: 10.1111/1467-9590.00116. |
[23] |
B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, Vol. 165, Springer, New York, 2008. |
[24] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Vol. 45, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[25] |
D. Ugurlu,
On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68 (2008), 1986-1992.
doi: 10.1016/j.na.2007.01.025. |
[26] |
K. Vafai and S. J. Kim,
Fluid mechanics of the interface region between a porous medium and a fluid layer–An exact solution, Int. J. Heat Fluid Flow, 11 (1990), 254-256.
doi: 10.1016/0142-727X(90)90045-D. |
[27] |
K. Vafai and S. J. Kim,
On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat and Fluid Flow, 16 (1995), 11-15.
doi: 10.1016/0142-727X(94)00002-T. |
[28] |
B. Wang and S. Lin,
Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495.
doi: 10.1002/mma.985. |
[29] |
S. Whitaker,
The Forchheimer equation: A theoretical development, Transp. Porous Media., 25 (1996), 27-62.
doi: 10.1007/BF00141261. |
[30] |
R. Yang, W. Liu and X.-G. Yang, Asymptotic stability of 3D Brinkman-Forchheimer equation with delay, preprint. Google Scholar |
[31] |
X.-G. Yang, L. Li, X. Yan and L. Ding,
The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay, Electron. Res. Arch., 28 (2020), 1396-1418.
doi: 10.3934/era.2020074. |
show all references
References:
[1] |
V. Barbu and S. S. Sritharan,
Navier-Stokes equation with hereditary viscosity, Z. Angew. Math. Phys., 54 (2003), 449-461.
doi: 10.1007/s00033-003-1087-y. |
[2] |
T. Caraballo and J. A. Langa,
On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Continuous Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513.
|
[3] |
T. Caraballo, G. Łukaszewicz and J. Real,
Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.
doi: 10.1016/j.na.2005.03.111. |
[4] |
T. Caraballo and J. Real,
Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.
doi: 10.1098/rspa.2001.0807. |
[5] |
T. Caraballo and J. Real,
Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.
doi: 10.1016/j.jde.2004.04.012. |
[6] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4581-4. |
[7] |
H. Crauel, A. Debussche and F. Flandoli,
Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.
doi: 10.1007/BF02219225. |
[8] |
H. Crauel and F. Flandoli,
Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.
doi: 10.1007/BF01193705. |
[9] |
E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[10] |
J. Garcia-Luengo and P. Marin-Rubio,
Attractors for a double time-delayed 2D Navier-Stokes model, Discrete Contin. Dyn. Syst., 34 (2014), 4085-4105.
doi: 10.3934/dcds.2014.34.4085. |
[11] |
J. K. Hale and J. Kato,
Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
|
[12] |
Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0084432. |
[13] |
V. K. Kalantarov and S. Zelik,
Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.
doi: 10.3934/cpaa.2012.11.2037. |
[14] |
J. R. Kang and J. Y. Park,
Uniform attractors for non-autonomous Brinkman-Forchheimer equations with delay, Acta Math. Sin. (Engl. Ser.), 29 (2013), 993-1006.
doi: 10.1007/s10114-013-1392-0. |
[15] |
L. Li, X. Yang, X. Li, X. Yan and Y. Lu,
Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.
doi: 10.3233/ASY-181512. |
[16] |
J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[17] |
Y. Liu,
Convergence and continuous dependence for the Brinkman-Forchheimer equations, Math. Comput. Modelling, 49 (2009), 1401-1415.
doi: 10.1016/j.mcm.2008.11.010. |
[18] |
P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009) 3956–3963.
doi: 10.1016/j.na.2009.02.065. |
[19] |
P. Marín-Rubio, J. Real and J. Valero,
Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.
doi: 10.1016/j.na.2010.11.008. |
[20] |
D. A. Nield,
The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12 (1991), 269-272.
doi: 10.1016/0142-727X(91)90062-Z. |
[21] |
Y. Ouyang and L. Yan,
A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059.
doi: 10.1016/j.na.2008.02.121. |
[22] |
L. E. Payne and B. Straughan,
Convergence and continuous dependence for the Brinkman–Forchheimer equations, Stud. Appl. Math., 102 (1999), 419-439.
doi: 10.1111/1467-9590.00116. |
[23] |
B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, Vol. 165, Springer, New York, 2008. |
[24] |
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Vol. 45, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[25] |
D. Ugurlu,
On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68 (2008), 1986-1992.
doi: 10.1016/j.na.2007.01.025. |
[26] |
K. Vafai and S. J. Kim,
Fluid mechanics of the interface region between a porous medium and a fluid layer–An exact solution, Int. J. Heat Fluid Flow, 11 (1990), 254-256.
doi: 10.1016/0142-727X(90)90045-D. |
[27] |
K. Vafai and S. J. Kim,
On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat and Fluid Flow, 16 (1995), 11-15.
doi: 10.1016/0142-727X(94)00002-T. |
[28] |
B. Wang and S. Lin,
Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495.
doi: 10.1002/mma.985. |
[29] |
S. Whitaker,
The Forchheimer equation: A theoretical development, Transp. Porous Media., 25 (1996), 27-62.
doi: 10.1007/BF00141261. |
[30] |
R. Yang, W. Liu and X.-G. Yang, Asymptotic stability of 3D Brinkman-Forchheimer equation with delay, preprint. Google Scholar |
[31] |
X.-G. Yang, L. Li, X. Yan and L. Ding,
The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay, Electron. Res. Arch., 28 (2020), 1396-1418.
doi: 10.3934/era.2020074. |
[1] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[2] |
Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252 |
[3] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[4] |
Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028 |
[5] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[6] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[7] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[8] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[9] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[10] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021021 |
[11] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
[12] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[13] |
Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250 |
[14] |
Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021035 |
[15] |
Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022 |
[16] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[17] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[18] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[19] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[20] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
2019 Impact Factor: 1.105
Tools
Article outline
[Back to Top]