doi: 10.3934/cpaa.2021052

Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay

1. 

Faculty of Science, Beijing University of Technology, Ping Le Yuan 100, Chaoyang District, Beijing, 100124, China

2. 

Department of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

* Corresponding author: Rong Yang

Received  October 2020 Revised  January 2021 Published  March 2021

Fund Project: R. Yang is partially supported by NSFC (No. 11601021). X.-G. Yang is partially supported by the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039), Incubation Fund from Henan Normal University (No. 2020PL17) and Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2020003)

This paper is concerned with the pullback dynamics and asymptotic stability for a 3D Brinkman-Forchheimer equation with infinite delay. The well-posedness of weak solution to the 3D Brinkman-Forchheimer flow with infinite delay is investigated in the weighted space $ C_\kappa(H) $ firstly, then the pullback attractors are presented for the process of weak solution. Moreover, the existence of global attractor and the exponential stability analysis of stationary solutions are shown, which is based on the estimate of corresponding steady state equation.

Citation: Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021052
References:
[1]

V. Barbu and S. S. Sritharan, Navier-Stokes equation with hereditary viscosity, Z. Angew. Math. Phys., 54 (2003), 449-461.  doi: 10.1007/s00033-003-1087-y.  Google Scholar

[2]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Continuous Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513.   Google Scholar

[3]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[4]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[5]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[8]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[9]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[10]

J. Garcia-Luengo and P. Marin-Rubio, Attractors for a double time-delayed 2D Navier-Stokes model, Discrete Contin. Dyn. Syst., 34 (2014), 4085-4105.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[11]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.   Google Scholar

[12]

Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[13]

V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[14]

J. R. Kang and J. Y. Park, Uniform attractors for non-autonomous Brinkman-Forchheimer equations with delay, Acta Math. Sin. (Engl. Ser.), 29 (2013), 993-1006.  doi: 10.1007/s10114-013-1392-0.  Google Scholar

[15]

L. LiX. YangX. LiX. Yan and Y. Lu, Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.  doi: 10.3233/ASY-181512.  Google Scholar

[16]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[17]

Y. Liu, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Math. Comput. Modelling, 49 (2009), 1401-1415.  doi: 10.1016/j.mcm.2008.11.010.  Google Scholar

[18]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009) 3956–3963. doi: 10.1016/j.na.2009.02.065.  Google Scholar

[19]

P. Marín-RubioJ. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.  doi: 10.1016/j.na.2010.11.008.  Google Scholar

[20]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[21]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[22]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman–Forchheimer equations, Stud. Appl. Math., 102 (1999), 419-439.  doi: 10.1111/1467-9590.00116.  Google Scholar

[23]

B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, Vol. 165, Springer, New York, 2008.  Google Scholar

[24]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Vol. 45, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[25]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[26]

K. Vafai and S. J. Kim, Fluid mechanics of the interface region between a porous medium and a fluid layer–An exact solution, Int. J. Heat Fluid Flow, 11 (1990), 254-256.  doi: 10.1016/0142-727X(90)90045-D.  Google Scholar

[27]

K. Vafai and S. J. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat and Fluid Flow, 16 (1995), 11-15.  doi: 10.1016/0142-727X(94)00002-T.  Google Scholar

[28]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495.  doi: 10.1002/mma.985.  Google Scholar

[29]

S. Whitaker, The Forchheimer equation: A theoretical development, Transp. Porous Media., 25 (1996), 27-62.  doi: 10.1007/BF00141261.  Google Scholar

[30]

R. Yang, W. Liu and X.-G. Yang, Asymptotic stability of 3D Brinkman-Forchheimer equation with delay, preprint. Google Scholar

[31]

X.-G. YangL. LiX. Yan and L. Ding, The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay, Electron. Res. Arch., 28 (2020), 1396-1418.  doi: 10.3934/era.2020074.  Google Scholar

show all references

References:
[1]

V. Barbu and S. S. Sritharan, Navier-Stokes equation with hereditary viscosity, Z. Angew. Math. Phys., 54 (2003), 449-461.  doi: 10.1007/s00033-003-1087-y.  Google Scholar

[2]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Continuous Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513.   Google Scholar

[3]

T. CaraballoG. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64 (2006), 484-498.  doi: 10.1016/j.na.2005.03.111.  Google Scholar

[4]

T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441-2453.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[5]

T. Caraballo and J. Real, Attractors for 2D Navier-Stokes models with delays, J. Differential Equations, 205 (2004), 271-297.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

H. CrauelA. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9 (1997), 307-341.  doi: 10.1007/BF02219225.  Google Scholar

[8]

H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.  doi: 10.1007/BF01193705.  Google Scholar

[9]

E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-0895-2.  Google Scholar

[10]

J. Garcia-Luengo and P. Marin-Rubio, Attractors for a double time-delayed 2D Navier-Stokes model, Discrete Contin. Dyn. Syst., 34 (2014), 4085-4105.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[11]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.   Google Scholar

[12]

Y. Hino, S. Murakami, and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Vol. 1473, Springer-Verlag, Berlin, 1991. doi: 10.1007/BFb0084432.  Google Scholar

[13]

V. K. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.  Google Scholar

[14]

J. R. Kang and J. Y. Park, Uniform attractors for non-autonomous Brinkman-Forchheimer equations with delay, Acta Math. Sin. (Engl. Ser.), 29 (2013), 993-1006.  doi: 10.1007/s10114-013-1392-0.  Google Scholar

[15]

L. LiX. YangX. LiX. Yan and Y. Lu, Dynamics and stability of the 3D Brinkman-Forchheimer equation with variable delay (Ⅰ), Asymptot. Anal., 113 (2019), 167-194.  doi: 10.3233/ASY-181512.  Google Scholar

[16]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.  Google Scholar

[17]

Y. Liu, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Math. Comput. Modelling, 49 (2009), 1401-1415.  doi: 10.1016/j.mcm.2008.11.010.  Google Scholar

[18]

P. Marín-Rubio and J. Real, On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems, Nonlinear Anal., 71 (2009) 3956–3963. doi: 10.1016/j.na.2009.02.065.  Google Scholar

[19]

P. Marín-RubioJ. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74 (2011), 2012-2030.  doi: 10.1016/j.na.2010.11.008.  Google Scholar

[20]

D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Flow, 12 (1991), 269-272.  doi: 10.1016/0142-727X(91)90062-Z.  Google Scholar

[21]

Y. Ouyang and L. Yan, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.  Google Scholar

[22]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman–Forchheimer equations, Stud. Appl. Math., 102 (1999), 419-439.  doi: 10.1111/1467-9590.00116.  Google Scholar

[23]

B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, Vol. 165, Springer, New York, 2008.  Google Scholar

[24]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Vol. 45, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[25]

D. Ugurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.  Google Scholar

[26]

K. Vafai and S. J. Kim, Fluid mechanics of the interface region between a porous medium and a fluid layer–An exact solution, Int. J. Heat Fluid Flow, 11 (1990), 254-256.  doi: 10.1016/0142-727X(90)90045-D.  Google Scholar

[27]

K. Vafai and S. J. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat and Fluid Flow, 16 (1995), 11-15.  doi: 10.1016/0142-727X(94)00002-T.  Google Scholar

[28]

B. Wang and S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Meth. Appl. Sci., 31 (2008), 1479-1495.  doi: 10.1002/mma.985.  Google Scholar

[29]

S. Whitaker, The Forchheimer equation: A theoretical development, Transp. Porous Media., 25 (1996), 27-62.  doi: 10.1007/BF00141261.  Google Scholar

[30]

R. Yang, W. Liu and X.-G. Yang, Asymptotic stability of 3D Brinkman-Forchheimer equation with delay, preprint. Google Scholar

[31]

X.-G. YangL. LiX. Yan and L. Ding, The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay, Electron. Res. Arch., 28 (2020), 1396-1418.  doi: 10.3934/era.2020074.  Google Scholar

[1]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[2]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[3]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[4]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028

[5]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[6]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[7]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[8]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[9]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[10]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[11]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[12]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[13]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[14]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[15]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[16]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[17]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[18]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

2019 Impact Factor: 1.105

Article outline

[Back to Top]