May  2021, 20(5): 1987-2020. doi: 10.3934/cpaa.2021055

Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation

1. 

Department of Mathematics, State University of Paraíba, Campina Grande, PB 58429-500, Brazil

2. 

Department of Mathematics, State University of Maringá, Maringá, PR 87020-900, Brazil

3. 

Department of Mathematics, Federal University of Technology-Paraná, Cornélio Procópio, PR 86300-000, Brazil

* Corresponding author

Received  August 2020 Revised  February 2021 Published  May 2021 Early access  April 2021

Fund Project: Research of Valéria N. Domingos Cavalcanti is partially supported by the CNPq Grant 304895/2003-2

We are concerned with the transmission problem of nonlinear viscoelastic waves in a heterogeneous medium, establishing the well-posedness of solutions and the exponential stability of the related energy functional. We introduce an auxiliary problem to prove the exponential stability and the proof combines an observability inequality and microlocal analysis tools.

Citation: Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1987-2020. doi: 10.3934/cpaa.2021055
References:
[1]

M. S. AlvesJ. Muñoz RiveraM. Sepúlveda and O. Vera Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation, SIAM J. Appl. Math., 74 (1992), 345-365.  doi: 10.1137/130923233.  Google Scholar

[2]

M. S. AlvesJ. E. Muñoz RiveraM. SepúlvedaO. Vera Villagrán and M. Zegarra Garay, The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.  doi: 10.1002/mana.201200319.  Google Scholar

[3]

J. A. D. ApplebyM. FabrizioB. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci., 16 (2006), 1677-1694.   Google Scholar

[4]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wien. Ber., 70 (1874), 275-306.   Google Scholar

[5]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wied. Ann., 5 (1878), 430-432.   Google Scholar

[6]

N. Burq and P. Gérard, Contrôle Optimal des Équations Aux Dérivées Partielles, 2001. Available from: http://www.math.u-psud.fr/ burq/articles/coursX.pdf. Google Scholar

[7]

F. Cardoso and G. Vodev, Boundary stabilization of transmission problems, J. Math. Phys., 51(2010), 023512. doi: 10.1063/1.3277163.  Google Scholar

[8]

M. CavalcantiL. Fatori and Ma To Fu, Attractors for wave equations with degenerate memory, J. Differ. Equ., 260 (2016), 56-83.  doi: 10.1016/j.jde.2015.08.050.  Google Scholar

[9]

M. M. CavalcantiV. N. Domingos CavalcantiM. A. Jorge Silva and A. Y. S. Franco, Exponential stability for the wave model with localized memory in a past history framework, J. Differ. Equ., 264 (2018), 6535-6584.  doi: 10.1016/j.jde.2018.01.044.  Google Scholar

[10]

M. M. CavalcantiE. R. S. Coelho and V. N. Domingos Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., 81 (2020), 621-650.  doi: 10.1007/s00245-018-9514-9.  Google Scholar

[11]

M. ContiE. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.  doi: 10.1016/j.na.2013.08.015.  Google Scholar

[12]

M. ContiE. M. Marchini and V. Pata, Global attractors for nonlinear viscoelastic equations with memory, Commun. Pure Appl. Anal., 15 (2016), 1893-1913.  doi: 10.3934/cpaa.2016021.  Google Scholar

[13]

M. ContiE. M. Marchini and V. Pata, Non classical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[14]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[15]

V. DaneseP. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.  doi: 10.3934/dcds.2015.35.2881.  Google Scholar

[16]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.  Google Scholar

[17]

M. FabrizioC. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.  doi: 10.1007/s00205-010-0300-3.  Google Scholar

[18]

H. D. Fernandéz Sare and J. E. Muñoz Rivera, Analyticity of transmission problem to thermoelastic plates, Quart. Appl. Math., 69 (2011), 1-13.  doi: 10.1090/S0033-569X-2010-01187-6.  Google Scholar

[19]

L. Gagnon, Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface, preprint, arXiv: 1711.00448. Google Scholar

[20]

P. Gérard, Microlocal defect measures, Commun. Partial Differ. Equ., 16 (1991), 1761-1794.  doi: 10.1080/03605309108820822.  Google Scholar

[21]

C. GiorgiJ. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[22]

M. Grasselli and V. Pata, Uniform attractors of non autonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (Eds. A. Lorenzi, B. Ruf), Birkhauser Verlag Basel/Switzerland, 50 (2002), 155–178. doi: 10.1007/978-3-0348-8221-7_9.  Google Scholar

[23]

A. Guesmia and S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[24]

Y. GuoM. A. RammahaS. SakuntasathienE. Titi and D. Toundykov, Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping, J. Differ. Equ., 257 (2014), 3778-3812.  doi: 10.1016/j.jde.2014.07.009.  Google Scholar

[25]

M. IgnatovaI. KukavicaI. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27 (2014), 467-499.  doi: 10.1088/0951-7715/27/3/467.  Google Scholar

[26]

J. E. Lagnese, Boundary controllability in problems of transmission for a class of Second order hyperbolic systems, ESAIM: Control Optim. Calc. Var., 2 (1997), 343-357.  doi: 10.1051/cocv:1997112.  Google Scholar

[27]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Coll. RMA, vol.8, Masson, Paris, 1988. Google Scholar

[28]

W. Liu, Stabilization and controllability for the transmission wave equation, IEEE Tran. Auto. Control, 46 (2001), 1900-1907.  doi: 10.1109/9.975473.  Google Scholar

[29]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, ZAMP, 53 (2002), 265-280.  doi: 10.1007/s00033-002-8155-6.  Google Scholar

[30]

W. Liu and G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.  doi: 10.1017/S0004972700031683.  Google Scholar

[31]

S. Nicaise, Boundary exact controllability of interface problems with singularities I: addition of the coefficients of singularities, SIAM J. Control Optim., 34 (1996), 1512-1532.  doi: 10.1137/S0363012995282103.  Google Scholar

[32]

S. Nicaise, Boundary exact controllability of interface problems with singularities II: addition of internal controls, SIAM J. Control Optim., 35 (1997), 585-603.  doi: 10.1137/S0363012995292032.  Google Scholar

[33]

T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differ. Equ., 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[34]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333–360., Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

J. E. Muñoz Rivera and M. G. Naso, About asymptotic behavior for a transmission problem in hyperbolic thermoelasticity, Acta Appl. Math., 99 (2007), 1-27.  doi: 10.1007/s10440-007-9152-8.  Google Scholar

[37]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 1-21.  doi: 10.1023/A:1006449032100.  Google Scholar

[38]

J. Simon, Compact Sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[39]

V. Volterra, Sur les équations intégro-différentielles et leurs applications, Acta Math., 35 (1912), 295-356.  doi: 10.1007/BF02418820.  Google Scholar

[40]

V. Volterra, LeÇons Sur Les Fonctions De Lignes, Gauthier-Villars, Paris, 1913. Google Scholar

show all references

References:
[1]

M. S. AlvesJ. Muñoz RiveraM. Sepúlveda and O. Vera Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation, SIAM J. Appl. Math., 74 (1992), 345-365.  doi: 10.1137/130923233.  Google Scholar

[2]

M. S. AlvesJ. E. Muñoz RiveraM. SepúlvedaO. Vera Villagrán and M. Zegarra Garay, The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.  doi: 10.1002/mana.201200319.  Google Scholar

[3]

J. A. D. ApplebyM. FabrizioB. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci., 16 (2006), 1677-1694.   Google Scholar

[4]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wien. Ber., 70 (1874), 275-306.   Google Scholar

[5]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wied. Ann., 5 (1878), 430-432.   Google Scholar

[6]

N. Burq and P. Gérard, Contrôle Optimal des Équations Aux Dérivées Partielles, 2001. Available from: http://www.math.u-psud.fr/ burq/articles/coursX.pdf. Google Scholar

[7]

F. Cardoso and G. Vodev, Boundary stabilization of transmission problems, J. Math. Phys., 51(2010), 023512. doi: 10.1063/1.3277163.  Google Scholar

[8]

M. CavalcantiL. Fatori and Ma To Fu, Attractors for wave equations with degenerate memory, J. Differ. Equ., 260 (2016), 56-83.  doi: 10.1016/j.jde.2015.08.050.  Google Scholar

[9]

M. M. CavalcantiV. N. Domingos CavalcantiM. A. Jorge Silva and A. Y. S. Franco, Exponential stability for the wave model with localized memory in a past history framework, J. Differ. Equ., 264 (2018), 6535-6584.  doi: 10.1016/j.jde.2018.01.044.  Google Scholar

[10]

M. M. CavalcantiE. R. S. Coelho and V. N. Domingos Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., 81 (2020), 621-650.  doi: 10.1007/s00245-018-9514-9.  Google Scholar

[11]

M. ContiE. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.  doi: 10.1016/j.na.2013.08.015.  Google Scholar

[12]

M. ContiE. M. Marchini and V. Pata, Global attractors for nonlinear viscoelastic equations with memory, Commun. Pure Appl. Anal., 15 (2016), 1893-1913.  doi: 10.3934/cpaa.2016021.  Google Scholar

[13]

M. ContiE. M. Marchini and V. Pata, Non classical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[14]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[15]

V. DaneseP. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.  doi: 10.3934/dcds.2015.35.2881.  Google Scholar

[16]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.  Google Scholar

[17]

M. FabrizioC. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.  doi: 10.1007/s00205-010-0300-3.  Google Scholar

[18]

H. D. Fernandéz Sare and J. E. Muñoz Rivera, Analyticity of transmission problem to thermoelastic plates, Quart. Appl. Math., 69 (2011), 1-13.  doi: 10.1090/S0033-569X-2010-01187-6.  Google Scholar

[19]

L. Gagnon, Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface, preprint, arXiv: 1711.00448. Google Scholar

[20]

P. Gérard, Microlocal defect measures, Commun. Partial Differ. Equ., 16 (1991), 1761-1794.  doi: 10.1080/03605309108820822.  Google Scholar

[21]

C. GiorgiJ. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[22]

M. Grasselli and V. Pata, Uniform attractors of non autonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (Eds. A. Lorenzi, B. Ruf), Birkhauser Verlag Basel/Switzerland, 50 (2002), 155–178. doi: 10.1007/978-3-0348-8221-7_9.  Google Scholar

[23]

A. Guesmia and S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[24]

Y. GuoM. A. RammahaS. SakuntasathienE. Titi and D. Toundykov, Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping, J. Differ. Equ., 257 (2014), 3778-3812.  doi: 10.1016/j.jde.2014.07.009.  Google Scholar

[25]

M. IgnatovaI. KukavicaI. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27 (2014), 467-499.  doi: 10.1088/0951-7715/27/3/467.  Google Scholar

[26]

J. E. Lagnese, Boundary controllability in problems of transmission for a class of Second order hyperbolic systems, ESAIM: Control Optim. Calc. Var., 2 (1997), 343-357.  doi: 10.1051/cocv:1997112.  Google Scholar

[27]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Coll. RMA, vol.8, Masson, Paris, 1988. Google Scholar

[28]

W. Liu, Stabilization and controllability for the transmission wave equation, IEEE Tran. Auto. Control, 46 (2001), 1900-1907.  doi: 10.1109/9.975473.  Google Scholar

[29]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, ZAMP, 53 (2002), 265-280.  doi: 10.1007/s00033-002-8155-6.  Google Scholar

[30]

W. Liu and G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.  doi: 10.1017/S0004972700031683.  Google Scholar

[31]

S. Nicaise, Boundary exact controllability of interface problems with singularities I: addition of the coefficients of singularities, SIAM J. Control Optim., 34 (1996), 1512-1532.  doi: 10.1137/S0363012995282103.  Google Scholar

[32]

S. Nicaise, Boundary exact controllability of interface problems with singularities II: addition of internal controls, SIAM J. Control Optim., 35 (1997), 585-603.  doi: 10.1137/S0363012995292032.  Google Scholar

[33]

T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differ. Equ., 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[34]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333–360., Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

J. E. Muñoz Rivera and M. G. Naso, About asymptotic behavior for a transmission problem in hyperbolic thermoelasticity, Acta Appl. Math., 99 (2007), 1-27.  doi: 10.1007/s10440-007-9152-8.  Google Scholar

[37]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 1-21.  doi: 10.1023/A:1006449032100.  Google Scholar

[38]

J. Simon, Compact Sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[39]

V. Volterra, Sur les équations intégro-différentielles et leurs applications, Acta Math., 35 (1912), 295-356.  doi: 10.1007/BF02418820.  Google Scholar

[40]

V. Volterra, LeÇons Sur Les Fonctions De Lignes, Gauthier-Villars, Paris, 1913. Google Scholar

Figure 1.  Domain
[1]

Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543

[2]

Mohammad Kafini. On the blow-up of the Cauchy problem of higher-order nonlinear viscoelastic wave equation. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021093

[3]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[4]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021025

[5]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[6]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[7]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[8]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[9]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[10]

Davit Martirosyan. Exponential mixing for the white-forced damped nonlinear wave equation. Evolution Equations & Control Theory, 2014, 3 (4) : 645-670. doi: 10.3934/eect.2014.3.645

[11]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[12]

Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations & Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008

[13]

Tai-Chia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 391-398. doi: 10.3934/dcds.1999.5.391

[14]

Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations & Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014

[15]

Mohammad Akil, Haidar Badawi, Ali Wehbe. Stability results of a singular local interaction elastic/viscoelastic coupled wave equations with time delay. Communications on Pure & Applied Analysis, 2021, 20 (9) : 2991-3028. doi: 10.3934/cpaa.2021092

[16]

Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 637-679. doi: 10.3934/krm.2019025

[17]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[18]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[19]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[20]

Q-Heung Choi, Tacksun Jung. A nonlinear wave equation with jumping nonlinearity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 797-802. doi: 10.3934/dcds.2000.6.797

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (116)
  • HTML views (134)
  • Cited by (0)

[Back to Top]