doi: 10.3934/cpaa.2021055

Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation

1. 

Department of Mathematics, State University of Paraíba, Campina Grande, PB 58429-500, Brazil

2. 

Department of Mathematics, State University of Maringá, Maringá, PR 87020-900, Brazil

3. 

Department of Mathematics, Federal University of Technology-Paraná, Cornélio Procópio, PR 86300-000, Brazil

* Corresponding author

Received  August 2020 Revised  February 2021 Published  April 2021

Fund Project: Research of Valéria N. Domingos Cavalcanti is partially supported by the CNPq Grant 304895/2003-2

We are concerned with the transmission problem of nonlinear viscoelastic waves in a heterogeneous medium, establishing the well-posedness of solutions and the exponential stability of the related energy functional. We introduce an auxiliary problem to prove the exponential stability and the proof combines an observability inequality and microlocal analysis tools.

Citation: Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021055
References:
[1]

M. S. AlvesJ. Muñoz RiveraM. Sepúlveda and O. Vera Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation, SIAM J. Appl. Math., 74 (1992), 345-365.  doi: 10.1137/130923233.  Google Scholar

[2]

M. S. AlvesJ. E. Muñoz RiveraM. SepúlvedaO. Vera Villagrán and M. Zegarra Garay, The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.  doi: 10.1002/mana.201200319.  Google Scholar

[3]

J. A. D. ApplebyM. FabrizioB. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci., 16 (2006), 1677-1694.   Google Scholar

[4]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wien. Ber., 70 (1874), 275-306.   Google Scholar

[5]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wied. Ann., 5 (1878), 430-432.   Google Scholar

[6]

N. Burq and P. Gérard, Contrôle Optimal des Équations Aux Dérivées Partielles, 2001. Available from: http://www.math.u-psud.fr/ burq/articles/coursX.pdf. Google Scholar

[7]

F. Cardoso and G. Vodev, Boundary stabilization of transmission problems, J. Math. Phys., 51(2010), 023512. doi: 10.1063/1.3277163.  Google Scholar

[8]

M. CavalcantiL. Fatori and Ma To Fu, Attractors for wave equations with degenerate memory, J. Differ. Equ., 260 (2016), 56-83.  doi: 10.1016/j.jde.2015.08.050.  Google Scholar

[9]

M. M. CavalcantiV. N. Domingos CavalcantiM. A. Jorge Silva and A. Y. S. Franco, Exponential stability for the wave model with localized memory in a past history framework, J. Differ. Equ., 264 (2018), 6535-6584.  doi: 10.1016/j.jde.2018.01.044.  Google Scholar

[10]

M. M. CavalcantiE. R. S. Coelho and V. N. Domingos Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., 81 (2020), 621-650.  doi: 10.1007/s00245-018-9514-9.  Google Scholar

[11]

M. ContiE. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.  doi: 10.1016/j.na.2013.08.015.  Google Scholar

[12]

M. ContiE. M. Marchini and V. Pata, Global attractors for nonlinear viscoelastic equations with memory, Commun. Pure Appl. Anal., 15 (2016), 1893-1913.  doi: 10.3934/cpaa.2016021.  Google Scholar

[13]

M. ContiE. M. Marchini and V. Pata, Non classical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[14]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[15]

V. DaneseP. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.  doi: 10.3934/dcds.2015.35.2881.  Google Scholar

[16]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.  Google Scholar

[17]

M. FabrizioC. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.  doi: 10.1007/s00205-010-0300-3.  Google Scholar

[18]

H. D. Fernandéz Sare and J. E. Muñoz Rivera, Analyticity of transmission problem to thermoelastic plates, Quart. Appl. Math., 69 (2011), 1-13.  doi: 10.1090/S0033-569X-2010-01187-6.  Google Scholar

[19]

L. Gagnon, Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface, preprint, arXiv: 1711.00448. Google Scholar

[20]

P. Gérard, Microlocal defect measures, Commun. Partial Differ. Equ., 16 (1991), 1761-1794.  doi: 10.1080/03605309108820822.  Google Scholar

[21]

C. GiorgiJ. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[22]

M. Grasselli and V. Pata, Uniform attractors of non autonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (Eds. A. Lorenzi, B. Ruf), Birkhauser Verlag Basel/Switzerland, 50 (2002), 155–178. doi: 10.1007/978-3-0348-8221-7_9.  Google Scholar

[23]

A. Guesmia and S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[24]

Y. GuoM. A. RammahaS. SakuntasathienE. Titi and D. Toundykov, Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping, J. Differ. Equ., 257 (2014), 3778-3812.  doi: 10.1016/j.jde.2014.07.009.  Google Scholar

[25]

M. IgnatovaI. KukavicaI. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27 (2014), 467-499.  doi: 10.1088/0951-7715/27/3/467.  Google Scholar

[26]

J. E. Lagnese, Boundary controllability in problems of transmission for a class of Second order hyperbolic systems, ESAIM: Control Optim. Calc. Var., 2 (1997), 343-357.  doi: 10.1051/cocv:1997112.  Google Scholar

[27]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Coll. RMA, vol.8, Masson, Paris, 1988. Google Scholar

[28]

W. Liu, Stabilization and controllability for the transmission wave equation, IEEE Tran. Auto. Control, 46 (2001), 1900-1907.  doi: 10.1109/9.975473.  Google Scholar

[29]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, ZAMP, 53 (2002), 265-280.  doi: 10.1007/s00033-002-8155-6.  Google Scholar

[30]

W. Liu and G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.  doi: 10.1017/S0004972700031683.  Google Scholar

[31]

S. Nicaise, Boundary exact controllability of interface problems with singularities I: addition of the coefficients of singularities, SIAM J. Control Optim., 34 (1996), 1512-1532.  doi: 10.1137/S0363012995282103.  Google Scholar

[32]

S. Nicaise, Boundary exact controllability of interface problems with singularities II: addition of internal controls, SIAM J. Control Optim., 35 (1997), 585-603.  doi: 10.1137/S0363012995292032.  Google Scholar

[33]

T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differ. Equ., 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[34]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333–360., Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

J. E. Muñoz Rivera and M. G. Naso, About asymptotic behavior for a transmission problem in hyperbolic thermoelasticity, Acta Appl. Math., 99 (2007), 1-27.  doi: 10.1007/s10440-007-9152-8.  Google Scholar

[37]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 1-21.  doi: 10.1023/A:1006449032100.  Google Scholar

[38]

J. Simon, Compact Sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[39]

V. Volterra, Sur les équations intégro-différentielles et leurs applications, Acta Math., 35 (1912), 295-356.  doi: 10.1007/BF02418820.  Google Scholar

[40]

V. Volterra, LeÇons Sur Les Fonctions De Lignes, Gauthier-Villars, Paris, 1913. Google Scholar

show all references

References:
[1]

M. S. AlvesJ. Muñoz RiveraM. Sepúlveda and O. Vera Villagrán, The lack of exponential stability in certain transmission problems with localized Kelvin-Voigt dissipation, SIAM J. Appl. Math., 74 (1992), 345-365.  doi: 10.1137/130923233.  Google Scholar

[2]

M. S. AlvesJ. E. Muñoz RiveraM. SepúlvedaO. Vera Villagrán and M. Zegarra Garay, The asymptotic behavior of the linear transmission problem in viscoelasticity, Math. Nachr., 287 (2014), 483-497.  doi: 10.1002/mana.201200319.  Google Scholar

[3]

J. A. D. ApplebyM. FabrizioB. Lazzari and D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci., 16 (2006), 1677-1694.   Google Scholar

[4]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wien. Ber., 70 (1874), 275-306.   Google Scholar

[5]

L. Boltzmann, Zur Theorie der elastischen Nachwirkung, Wied. Ann., 5 (1878), 430-432.   Google Scholar

[6]

N. Burq and P. Gérard, Contrôle Optimal des Équations Aux Dérivées Partielles, 2001. Available from: http://www.math.u-psud.fr/ burq/articles/coursX.pdf. Google Scholar

[7]

F. Cardoso and G. Vodev, Boundary stabilization of transmission problems, J. Math. Phys., 51(2010), 023512. doi: 10.1063/1.3277163.  Google Scholar

[8]

M. CavalcantiL. Fatori and Ma To Fu, Attractors for wave equations with degenerate memory, J. Differ. Equ., 260 (2016), 56-83.  doi: 10.1016/j.jde.2015.08.050.  Google Scholar

[9]

M. M. CavalcantiV. N. Domingos CavalcantiM. A. Jorge Silva and A. Y. S. Franco, Exponential stability for the wave model with localized memory in a past history framework, J. Differ. Equ., 264 (2018), 6535-6584.  doi: 10.1016/j.jde.2018.01.044.  Google Scholar

[10]

M. M. CavalcantiE. R. S. Coelho and V. N. Domingos Cavalcanti, Exponential stability for a transmission problem of a viscoelastic wave equation, Appl. Math. Optim., 81 (2020), 621-650.  doi: 10.1007/s00245-018-9514-9.  Google Scholar

[11]

M. ContiE. M. Marchini and V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal., 94 (2014), 206-216.  doi: 10.1016/j.na.2013.08.015.  Google Scholar

[12]

M. ContiE. M. Marchini and V. Pata, Global attractors for nonlinear viscoelastic equations with memory, Commun. Pure Appl. Anal., 15 (2016), 1893-1913.  doi: 10.3934/cpaa.2016021.  Google Scholar

[13]

M. ContiE. M. Marchini and V. Pata, Non classical diffusion with memory, Math. Meth. Appl. Sci., 38 (2015), 948-958.  doi: 10.1002/mma.3120.  Google Scholar

[14]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[15]

V. DaneseP. Geredeli and V. Pata, Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35 (2015), 2881-2904.  doi: 10.3934/dcds.2015.35.2881.  Google Scholar

[16]

T. DuyckaertsX. Zhang and E. Zuazua, On the optimality of the observability inequalities for parabolic and hyperbolic systems with potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 1-41.  doi: 10.1016/j.anihpc.2006.07.005.  Google Scholar

[17]

M. FabrizioC. Giorgi and V. Pata, A new approach to equations with memory, Arch. Ration. Mech. Anal., 198 (2010), 189-232.  doi: 10.1007/s00205-010-0300-3.  Google Scholar

[18]

H. D. Fernandéz Sare and J. E. Muñoz Rivera, Analyticity of transmission problem to thermoelastic plates, Quart. Appl. Math., 69 (2011), 1-13.  doi: 10.1090/S0033-569X-2010-01187-6.  Google Scholar

[19]

L. Gagnon, Sufficient Conditions for the Controllability of Wave Equations with a Transmission Condition at the Interface, preprint, arXiv: 1711.00448. Google Scholar

[20]

P. Gérard, Microlocal defect measures, Commun. Partial Differ. Equ., 16 (1991), 1761-1794.  doi: 10.1080/03605309108820822.  Google Scholar

[21]

C. GiorgiJ. E. Muñoz Rivera and V. Pata, Global attractors for a semilinear hyperbolic equation in viscoelasticity, J. Math. Anal. Appl., 260 (2001), 83-99.  doi: 10.1006/jmaa.2001.7437.  Google Scholar

[22]

M. Grasselli and V. Pata, Uniform attractors of non autonomous systems with memory, in Evolution Equations, Semigroups and Functional Analysis (Eds. A. Lorenzi, B. Ruf), Birkhauser Verlag Basel/Switzerland, 50 (2002), 155–178. doi: 10.1007/978-3-0348-8221-7_9.  Google Scholar

[23]

A. Guesmia and S. A. Messaoudi, A general decay result for a viscoelastic equation in the presence of past and finite history memories, Nonlinear Anal. Real World Appl., 13 (2012), 476-485.  doi: 10.1016/j.nonrwa.2011.08.004.  Google Scholar

[24]

Y. GuoM. A. RammahaS. SakuntasathienE. Titi and D. Toundykov, Hadamard well-posedness for a hyperbolic equation of viscoelasticity with supercritical sources and damping, J. Differ. Equ., 257 (2014), 3778-3812.  doi: 10.1016/j.jde.2014.07.009.  Google Scholar

[25]

M. IgnatovaI. KukavicaI. Lasiecka and A. Tuffaha, On well-posedness and small data global existence for an interface damped free boundary fluid-structure model, Nonlinearity, 27 (2014), 467-499.  doi: 10.1088/0951-7715/27/3/467.  Google Scholar

[26]

J. E. Lagnese, Boundary controllability in problems of transmission for a class of Second order hyperbolic systems, ESAIM: Control Optim. Calc. Var., 2 (1997), 343-357.  doi: 10.1051/cocv:1997112.  Google Scholar

[27]

J. L. Lions, Contrôlabilité Exacte, Perturbations et Stabilization de Systèmes Distribués, Tome 1, Contrôlabilité Exacte, Coll. RMA, vol.8, Masson, Paris, 1988. Google Scholar

[28]

W. Liu, Stabilization and controllability for the transmission wave equation, IEEE Tran. Auto. Control, 46 (2001), 1900-1907.  doi: 10.1109/9.975473.  Google Scholar

[29]

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity, ZAMP, 53 (2002), 265-280.  doi: 10.1007/s00033-002-8155-6.  Google Scholar

[30]

W. Liu and G. Williams, The exponential stability of the problem of transmission of the wave equation, Bull. Austral. Math. Soc., 57 (1998), 305-327.  doi: 10.1017/S0004972700031683.  Google Scholar

[31]

S. Nicaise, Boundary exact controllability of interface problems with singularities I: addition of the coefficients of singularities, SIAM J. Control Optim., 34 (1996), 1512-1532.  doi: 10.1137/S0363012995282103.  Google Scholar

[32]

S. Nicaise, Boundary exact controllability of interface problems with singularities II: addition of internal controls, SIAM J. Control Optim., 35 (1997), 585-603.  doi: 10.1137/S0363012995292032.  Google Scholar

[33]

T. ÖzsariV. K. Kalantarov and I. Lasiecka, Uniform decay rates for the energy of weakly damped defocusing semilinear Schrödinger equations with inhomogeneous Dirichlet boundary control, J. Differ. Equ., 251 (2011), 1841-1863.  doi: 10.1016/j.jde.2011.04.003.  Google Scholar

[34]

V. Pata, Stability and exponential stability in linear viscoelasticity, Milan J. Math., 77 (2009), 333–360., Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

J. E. Muñoz Rivera and M. G. Naso, About asymptotic behavior for a transmission problem in hyperbolic thermoelasticity, Acta Appl. Math., 99 (2007), 1-27.  doi: 10.1007/s10440-007-9152-8.  Google Scholar

[37]

J. E. Muñoz Rivera and H. P. Oquendo, The transmission problem of viscoelastic waves, Acta Appl. Math., 62 (2000), 1-21.  doi: 10.1023/A:1006449032100.  Google Scholar

[38]

J. Simon, Compact Sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.  doi: 10.1007/BF01762360.  Google Scholar

[39]

V. Volterra, Sur les équations intégro-différentielles et leurs applications, Acta Math., 35 (1912), 295-356.  doi: 10.1007/BF02418820.  Google Scholar

[40]

V. Volterra, LeÇons Sur Les Fonctions De Lignes, Gauthier-Villars, Paris, 1913. Google Scholar

Figure 1.  Domain
[1]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[2]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[3]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[4]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[5]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[6]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[7]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[8]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[9]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[10]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[11]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[12]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[13]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction wave for the compressible non-isentropic Navier-Stokes-Maxwell equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1297-1317. doi: 10.3934/cpaa.2021021

[14]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[16]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[17]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[19]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[20]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]