doi: 10.3934/cpaa.2021056

A generalized complex Ginzburg-Landau equation: Global existence and stability results

1. 

Center for Mathematical Analysis, Geometry and Dynamical Systems, Department of Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

2. 

CMAF-CIO, Universidade de Lisboa, Edifício C6, Campo Grande, 1749-016 Lisboa, Portugal

* Corresponding author

Received  October 2020 Revised  February 2021 Published  April 2021

Fund Project: The first author is supported by Fundação para a Ciência e Tecnologia, through the grant UIDB/MAT/04459/2020. The second author is supported by Fundação para a Ciência e Tecnologia, through the grant UIDB/04561/2020

We consider the complex Ginzburg-Landau equation with two pure-power nonlinearities and a damping term. After proving a general global existence result, we focus on the existence and stability of several periodic orbits, namely the trivial equilibrium, bound-states and solutions independent of the spatial variable. In particular, we construct bound-states either explicitly in the real line or through a bifurcation argument for a double eigenvalue of the Dirichlet-Laplace operator on bounded domains.

Citation: Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021056
References:
[1]

I. S. Aronson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), 99-143.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Arch. Racin. Mech. Anal., 82 (1983), 313-375.  doi: 10.1007/BF00250555.  Google Scholar

[3]

M. S. Berger, A bifurcation theory for nonlinear elliptic partial differential equations and related systems, Bifurcation theory and nonlinear eigenvalue problems, Keller, Joseph and Antman, W.A. Benjamin, Inc. (1969) 113–190  Google Scholar

[4]

T. CazenaveJ. P. Dias and M. Figueira, Finite-time blowup for a complex Ginzburg-Landau equation with linear driving, J. Evol. Equ., 14 (2014), 403-415.  doi: 10.1007/s00028-014-0220-z.  Google Scholar

[5]

T. CazenaveF. Dickstein and F. Weissler, Finite time blowup for a complex Ginzburg-Landau equation, SIAM J. Math. Anal., 45 (2013), 244-266.  doi: 10.1137/120878690.  Google Scholar

[6]

T. CazenaveF. Dickstein and F. Weissler, Standing waves of the complex Ginzburg-Landau equation, Nonlinear Anal., 103 (2014), 26-32.  doi: 10.1016/j.na.2014.03.001.  Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. doi: 10.1137/1.9781611971309.  Google Scholar

[8]

S. Correia and M. Figueira, Some stability results for the complex Ginzburg-Landau equation, to appear in Comm. Contemp. Math. doi: 10.1142/S021919971950038X.  Google Scholar

[9]

R. Cipolatti, F. Dickstein and J. P. Puel, Existence of standing waves for the complex Ginzburg-Landau equation, J. Math. Anal. Appl., 422 (2015), 579–593. doi: 10.1016/j.jmaa.2014.08.057.  Google Scholar

[10]

E. Coddington and N. Levinson, Theory of ordinary differential equations, New York (McGraw-Hill), (1955)  Google Scholar

[11]

R. J. Deissler and H. R. Brand, Periodic, Quasiperiodic and Cahotic Localized Solutions of the Quintic Complex Ginzburg-Landau Equation, Phys. Rev. Lett., 4 (1994), 478-482.   Google Scholar

[12]

P. M. del, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square, Proc. Amer. Math. Soc., 131 (2003) doi: 10.1090/S0002-9939-03-06906-5.  Google Scholar

[13]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., 1969.  Google Scholar

[14]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation $ \rm{I :} $ Compactness methods, Phys. D, 95 (1996), 191-228.  doi: 10.1016/0167-2789(96)00055-3.  Google Scholar

[15]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation $ \rm{II:} $ Contraction methods, Commun. Math. Phys., 187 (1997), 45-79.  doi: 10.1007/s002200050129.  Google Scholar

[16]

J. K. Hale, Dynamical systems and stability, J. Math. Anal. Appl., 26 (1969), 39-59.  doi: 10.1016/0022-247X(69)90175-9.  Google Scholar

[17]

P. Hartman, Ordinary Differential Equations, SIAM, 1987.  Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.  Google Scholar

[19]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau Equation as a Model Problem, AMS, Providence, R.I., 1996,141–190. doi: 10.1080/03605309708821254.  Google Scholar

[20]

N. Masmoudi and H. Zaag, Blow-up profile for the complex Ginzburg-Landau equation, J. Funct. Anal., 255 (2008), 1613-1666.  doi: 10.1016/j.jfa.2008.03.008.  Google Scholar

[21]

N. Okazawa and T. Yokota, Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation, Discrete Contin. Dyn. Syst., 28 (2010), 311-341.  doi: 10.3934/dcds.2010.28.311.  Google Scholar

[22]

S. PoppO. StillerE. Kuznetsov and L. Kramer, The cubic complex Ginzburg-Landau equation for a backward bifurcation, Phys. D, 114 (1998), 81-107.  doi: 10.1016/S0167-2789(97)00170-X.  Google Scholar

show all references

References:
[1]

I. S. Aronson and L. Kramer, The world of the complex Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), 99-143.  doi: 10.1103/RevModPhys.74.99.  Google Scholar

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Arch. Racin. Mech. Anal., 82 (1983), 313-375.  doi: 10.1007/BF00250555.  Google Scholar

[3]

M. S. Berger, A bifurcation theory for nonlinear elliptic partial differential equations and related systems, Bifurcation theory and nonlinear eigenvalue problems, Keller, Joseph and Antman, W.A. Benjamin, Inc. (1969) 113–190  Google Scholar

[4]

T. CazenaveJ. P. Dias and M. Figueira, Finite-time blowup for a complex Ginzburg-Landau equation with linear driving, J. Evol. Equ., 14 (2014), 403-415.  doi: 10.1007/s00028-014-0220-z.  Google Scholar

[5]

T. CazenaveF. Dickstein and F. Weissler, Finite time blowup for a complex Ginzburg-Landau equation, SIAM J. Math. Anal., 45 (2013), 244-266.  doi: 10.1137/120878690.  Google Scholar

[6]

T. CazenaveF. Dickstein and F. Weissler, Standing waves of the complex Ginzburg-Landau equation, Nonlinear Anal., 103 (2014), 26-32.  doi: 10.1016/j.na.2014.03.001.  Google Scholar

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. doi: 10.1137/1.9781611971309.  Google Scholar

[8]

S. Correia and M. Figueira, Some stability results for the complex Ginzburg-Landau equation, to appear in Comm. Contemp. Math. doi: 10.1142/S021919971950038X.  Google Scholar

[9]

R. Cipolatti, F. Dickstein and J. P. Puel, Existence of standing waves for the complex Ginzburg-Landau equation, J. Math. Anal. Appl., 422 (2015), 579–593. doi: 10.1016/j.jmaa.2014.08.057.  Google Scholar

[10]

E. Coddington and N. Levinson, Theory of ordinary differential equations, New York (McGraw-Hill), (1955)  Google Scholar

[11]

R. J. Deissler and H. R. Brand, Periodic, Quasiperiodic and Cahotic Localized Solutions of the Quintic Complex Ginzburg-Landau Equation, Phys. Rev. Lett., 4 (1994), 478-482.   Google Scholar

[12]

P. M. del, J. García-Melián and M. Musso, Local bifurcation from the second eigenvalue of the Laplacian in a square, Proc. Amer. Math. Soc., 131 (2003) doi: 10.1090/S0002-9939-03-06906-5.  Google Scholar

[13]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., 1969.  Google Scholar

[14]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation $ \rm{I :} $ Compactness methods, Phys. D, 95 (1996), 191-228.  doi: 10.1016/0167-2789(96)00055-3.  Google Scholar

[15]

J. Ginibre and G. Velo, The Cauchy problem in local spaces for the complex Ginzburg-Landau equation $ \rm{II:} $ Contraction methods, Commun. Math. Phys., 187 (1997), 45-79.  doi: 10.1007/s002200050129.  Google Scholar

[16]

J. K. Hale, Dynamical systems and stability, J. Math. Anal. Appl., 26 (1969), 39-59.  doi: 10.1016/0022-247X(69)90175-9.  Google Scholar

[17]

P. Hartman, Ordinary Differential Equations, SIAM, 1987.  Google Scholar

[18]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.  Google Scholar

[19]

C. D. Levermore and M. Oliver, The complex Ginzburg-Landau Equation as a Model Problem, AMS, Providence, R.I., 1996,141–190. doi: 10.1080/03605309708821254.  Google Scholar

[20]

N. Masmoudi and H. Zaag, Blow-up profile for the complex Ginzburg-Landau equation, J. Funct. Anal., 255 (2008), 1613-1666.  doi: 10.1016/j.jfa.2008.03.008.  Google Scholar

[21]

N. Okazawa and T. Yokota, Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation, Discrete Contin. Dyn. Syst., 28 (2010), 311-341.  doi: 10.3934/dcds.2010.28.311.  Google Scholar

[22]

S. PoppO. StillerE. Kuznetsov and L. Kramer, The cubic complex Ginzburg-Landau equation for a backward bifurcation, Phys. D, 114 (1998), 81-107.  doi: 10.1016/S0167-2789(97)00170-X.  Google Scholar

[1]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[2]

Lingyu Li, Zhang Chen. Asymptotic behavior of non-autonomous random Ginzburg-Landau equation driven by colored noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3303-3333. doi: 10.3934/dcdsb.2020233

[3]

Yangrong Li, Fengling Wang, Shuang Yang. Part-convergent cocycles and semi-convergent attractors of stochastic 2D-Ginzburg-Landau delay equations toward zero-memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3643-3665. doi: 10.3934/dcdsb.2020250

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[6]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[7]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[10]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[11]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[12]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[13]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[14]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[15]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[16]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[17]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[18]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[19]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[20]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (12)
  • HTML views (18)
  • Cited by (0)

Other articles
by authors

[Back to Top]