-
Previous Article
A generalized complex Ginzburg-Landau equation: Global existence and stability results
- CPAA Home
- This Issue
-
Next Article
Collective behaviors of the Lohe Hermitian sphere model with inertia
Global well-posedness for effectively damped wave models with nonlinear memory
1. | Department of Mathematics, Faculty of exact sciences and informatics, University of Chlef, P.O. Box 50, 02000, Ouled-Fares, Chlef, Algeria |
2. | Laboratory of mechanic and energetic, University of Chlef, Algeria |
3. | Faculty for Mathematics and Computer Science, TU Bergakademie Freiberg, Prüferstr. 9, 09596, Freiberg, Germany |
In this paper, we study the Cauchy problem for a special family of effectively damped wave models with nonlinear memory on the right-hand side. Our goal is to prove global (in time) well-posedness results for Sobolev solutions. Due to the effective dissipation the model is parabolic like from the point of view of energy decay estimates of the corresponding linear Cauchy problem with vanishing right-hand side. For this reason there appears a Fujita type exponent as a threshold. Applying modern tools from Harmonic Analysis we prove several results by taking into consideration different regularity properties of the data.
References:
[1] |
T. Cazanave, F. Dickstein and F. D. Weissler,
An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862-874.
doi: 10.1016/j.na.2006.11.042. |
[2] |
S. Cui,
Local and global existence of solutions to semilinear parabolic initial value problems, Nonlinear Anal., 43 (2001), 293-323.
doi: 10.1016/S0362-546X(99)00195-9. |
[3] |
M. D'Abbicco,
The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal., 95 (2014), 130-145.
doi: 10.1016/j.na.2013.09.006. |
[4] |
M. D'Abbicco, G. Girardi and M. Reissig,
A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.
doi: 10.1016/j.na.2018.08.006. |
[5] |
M. D'Abbicco and S. Lucente, The beam equation with nonlinear memory, Z. Angew. Math. Phys., 67 (2016), 18 pp.
doi: 10.1007/s00033-016-0655-x. |
[6] |
M. D'Abbicco, S. Lucente and M. Reissig,
Semilinear wave equations with effective damping, Chin. Ann. Math., Serie B, 34 (2013), 345-380.
doi: 10.1007/s11401-013-0773-0. |
[7] |
A. Djaouti and M. Reissig,
Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data, Nonlinear Anal., 175 (2018), 28-55.
doi: 10.1016/j.na.2018.05.006. |
[8] |
M. R. Ebert and M. Reissig, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, Cham, 2018.
doi: 10.1007/978-3-319-66456-9. |
[9] |
A. Fino,
Critical exponent for damped wave equations with nonlinear memory, Nonlinear Anal., 74 (2011), 5495-5505.
doi: 10.1016/j.na.2011.01.039. |
[10] |
T. Hadj Kaddour and M. Reissig, Blow-up results for effectively damped wave models with nonlinear memory, 21 pp., accepted for publication in CPAA. Google Scholar |
[11] |
T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter series in nonlinear analysis and applications, Walter de Gruyter & Co., Berlin, 1996.
doi: 10.1515/9783110812411. |
[12] |
J. Wirth,
Wave equations with time-dependent dissipation II. Effective dissipation, J. Differ. Equ., 232 (2007), 74-103.
doi: 10.1016/j.jde.2006.06.004. |
show all references
References:
[1] |
T. Cazanave, F. Dickstein and F. D. Weissler,
An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862-874.
doi: 10.1016/j.na.2006.11.042. |
[2] |
S. Cui,
Local and global existence of solutions to semilinear parabolic initial value problems, Nonlinear Anal., 43 (2001), 293-323.
doi: 10.1016/S0362-546X(99)00195-9. |
[3] |
M. D'Abbicco,
The influence of a nonlinear memory on the damped wave equation, Nonlinear Anal., 95 (2014), 130-145.
doi: 10.1016/j.na.2013.09.006. |
[4] |
M. D'Abbicco, G. Girardi and M. Reissig,
A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.
doi: 10.1016/j.na.2018.08.006. |
[5] |
M. D'Abbicco and S. Lucente, The beam equation with nonlinear memory, Z. Angew. Math. Phys., 67 (2016), 18 pp.
doi: 10.1007/s00033-016-0655-x. |
[6] |
M. D'Abbicco, S. Lucente and M. Reissig,
Semilinear wave equations with effective damping, Chin. Ann. Math., Serie B, 34 (2013), 345-380.
doi: 10.1007/s11401-013-0773-0. |
[7] |
A. Djaouti and M. Reissig,
Weakly coupled systems of semilinear effectively damped waves with time-dependent coefficient, different power nonlinearities and different regularity of the data, Nonlinear Anal., 175 (2018), 28-55.
doi: 10.1016/j.na.2018.05.006. |
[8] |
M. R. Ebert and M. Reissig, Methods for Partial Differential Equations. Qualitative Properties of Solutions, Phase Space Analysis, Semilinear Models, Birkhäuser, Cham, 2018.
doi: 10.1007/978-3-319-66456-9. |
[9] |
A. Fino,
Critical exponent for damped wave equations with nonlinear memory, Nonlinear Anal., 74 (2011), 5495-5505.
doi: 10.1016/j.na.2011.01.039. |
[10] |
T. Hadj Kaddour and M. Reissig, Blow-up results for effectively damped wave models with nonlinear memory, 21 pp., accepted for publication in CPAA. Google Scholar |
[11] |
T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter series in nonlinear analysis and applications, Walter de Gruyter & Co., Berlin, 1996.
doi: 10.1515/9783110812411. |
[12] |
J. Wirth,
Wave equations with time-dependent dissipation II. Effective dissipation, J. Differ. Equ., 232 (2007), 74-103.
doi: 10.1016/j.jde.2006.06.004. |
[1] |
Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60 |
[2] |
Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592 |
[3] |
Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361 |
[4] |
Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37 |
[5] |
Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183 |
[6] |
Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251 |
[7] |
Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017 |
[8] |
Hiroshi Takeda. Large time behavior of solutions for a nonlinear damped wave equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 41-55. doi: 10.3934/cpaa.2016.15.41 |
[9] |
Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065 |
[10] |
Tayeb Hadj Kaddour, Michael Reissig. Blow-up results for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020239 |
[11] |
Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601 |
[12] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[13] |
Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090 |
[14] |
Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559 |
[15] |
Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 |
[16] |
Goro Akagi. Energy solutions of the Cauchy-Neumann problem for porous medium equations. Conference Publications, 2009, 2009 (Special) : 1-10. doi: 10.3934/proc.2009.2009.1 |
[17] |
M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215 |
[18] |
A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119 |
[19] |
Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014 |
[20] |
Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]