doi: 10.3934/cpaa.2021058

Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition

1. 

Unidade Acadêmica de Matemática, Universidade Federal de Campina Grande, 58429-970, Campina Grande - PB - Brazil

2. 

Departamento de Matemáticas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n. Trujillo-Peru

* Corresponding author

Received  October 2020 Revised  January 2021 Published  April 2021

Fund Project: C. O. Alves was partially supported by CNPq/Brazil 304804/2017-7 and C. E. Torres Ledesma was partially supported by INC Matemática 88887.136371/2017

In this paper we consider the existence and multiplicity of weak solutions for the following class of fractional elliptic problem
$ \begin{equation} \begin{cases} (-\Delta)^{\frac{1}{2}}u + u = Q(x)f(u)\;\;\mbox{in}\;\;\mathbb{R} \setminus (a, b)\\ \mathcal{N}_{1/2}u(x) = 0\;\;\qquad \qquad \quad \mbox{in}\;\;(a, b), \end{cases} \end{equation} \ \ \ \ \ \ \ \ (0.1) $
where
$ a, b\in \mathbb{R} $
with
$ a<b $
,
$ (-\Delta)^{\frac{1}{2}} $
denotes the fractional Laplacian operator and
$ \mathcal{N}_{1/2} $
is the nonlocal operator that describes the Neumann boundary condition, which is given by
$ \mathcal{N}_{1/2}u(x) = \frac{1}{\pi} \int_{\mathbb{R}\setminus (a, b)} \frac{u(x) - u(y)}{|x-y|^{2}}dy, \;\;x\in [a, b]. $
Citation: Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021058
References:
[1]

C. O. Alves, Existence of a positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity with exponential critical growth in $\mathbb{R}^2$, Milan J. Math., 84 (2016), 1-22.  doi: 10.1007/s00032-015-0247-9.  Google Scholar

[2]

C. O. Alves, Multiplicity of solutions for a class of elliptic problem in $\mathbb{R}^2$ with Neumann conditions, J. Differ. Equ., 219 (2005), 20-39.  doi: 10.1016/j.jde.2004.11.010.  Google Scholar

[3]

C. O. AlvesJ. M. do Ó and O. H. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal., 56 (2004), 781-791.  doi: 10.1016/j.na.2003.06.003.  Google Scholar

[4]

C. O. Alves, P. C. Carrião and E. S. Medeiros, Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions, Abstr. Appl. Anal.. 3 (2004), 251–268. doi: 10.1155/S1085337504310018.  Google Scholar

[5]

C. O. AlvesG. M. Figueiredo and G. Siciliano, Ground state solutions for fractional scalar field equations under a general critical nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 2199-2215.  doi: 10.3934/cpaa.2019099.  Google Scholar

[6]

C. O. AlvesJ. M. do Ó and O. H. Miyagaki, Concentration phenomena for fractional elliptic equations involving exponential critical growth, Adv. Nonlinear Stud., 16 (2016), 843-861.  doi: 10.1515/ans-2016-0097.  Google Scholar

[7]

C. O. AlvesG. M. Bisci and C. T. Ledesma, Existence of positive solutions for a class of fractional elliptic problem in exterior domain, J. Differ. Equ., 268 (2020), 7183-7219.  doi: 10.1016/j.jde.2019.11.068.  Google Scholar

[8]

C. O. Alves and C. T. Ledesma, Fractional elliptic problem in exterior domains with nonlocal Neumann boundary condition, Nonlinear Anal., 195 (2020), 111732. doi: 10.1016/j.na.2019.111732.  Google Scholar

[9]

C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method, Calc. Var., 55 (2016), 47. doi: 10.1007/s00526-016-0983-x.  Google Scholar

[10]

C. O. Alves and V. Ambrosio, A multiplicity result for a nonlinear fractional Schrödinger equation in $\mathbb{R}^N$ without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 466 (2018), 498-522.  doi: 10.1016/j.jmaa.2018.06.005.  Google Scholar

[11]

C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166.  doi: 10.1007/s00033-013-0376-3.  Google Scholar

[12]

V. Ambrosio, On a fractional magnetic Schrödinger equation in $\mathbb{R}$ with exponential critical growth, Nonlinear Anal., 183 (2019), 117-148.  doi: 10.1016/j.na.2019.01.016.  Google Scholar

[13]

T. BartschT. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1-18.  doi: 10.1007/BF02787822.  Google Scholar

[14]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.  doi: 10.1007/BF00282048.  Google Scholar

[15]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Springer International Publishing Switzerland, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[16]

D. Cao, Multiple solutions for a Neumann problem in an exterior domain, Commun. Partial Differ. Equ., 18 (1993), 687-700.  doi: 10.1080/03605309308820945.  Google Scholar

[17]

X. Chang and Z. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 256 (2014), 2965-2992.  doi: 10.1016/j.jde.2014.01.027.  Google Scholar

[18]

G. Chen, Singularly perturbed Neumann problem for fractional Schrödinger equations, Sci. China Math., 61 (2018), 695-708.  doi: 10.1007/s11425-016-0420-2.  Google Scholar

[19]

F. Demengel and G. Demengel, Functional Spaces for Theory of Elliptic Partial Differential Equations, Springer-Verlag London Limited, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[20]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[21]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the whole of $\mathbb{R}^N$, Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[22]

S. DipierroX. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377-416.  doi: 10.4171/RMI/942.  Google Scholar

[23]

M. Esteban, Nonsymmetric ground state of symmetric variational problems, Commun. Pure Appl. Math., XLIV (1991), 259-274.  doi: 10.1002/cpa.3160440205.  Google Scholar

[24]

P. FelmerA. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[25]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98.  doi: 10.1007/s00526-014-0778-x.  Google Scholar

[26]

R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[27]

R. FrankE. Lenzmann and L. Silvestre, Uniqueness of Radial Solutions for the Fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[28]

A. Iannizzotto and M. Squassina, $1/2$-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.  doi: 10.1016/j.jmaa.2013.12.059.  Google Scholar

[29]

A. IannizzottoS. Mosconi and M. Squassina, $H^s$ versus $C^0$ - weighted minimizers, Nonlinear Differ. Equ. Appl., 22 (2015), 477-497.  doi: 10.1007/s00030-014-0292-z.  Google Scholar

[30]

H. KozonoT. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951-1974.  doi: 10.1512/iumj.2006.55.2743.  Google Scholar

[31]

S. LulaA. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical point, Differ. Integral Equ., 29 (2016), 455-492.   Google Scholar

[32]

C. Miranda, Un'osservazione sul teorema di Brouwer, Boll. Unione Mat. Ital. Ser. II, Anno III, 19 (1940), 5-7.   Google Scholar

[33]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, University Printing House, Cambridge CB2 8BS, United Kingdom, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[34]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[35]

J. M. do ÓO. H. Miyagaki and M. Squassina, Non-autonomous fractional problems with exponential growth, Nonlinear Differ. Equ. Appl., 22 (2015), 1395-1410.  doi: 10.1007/s00030-015-0327-0.  Google Scholar

[36]

C. Pozrikidis, The Fractional Laplacian, Taylor & Francis Group, LLC 2016. doi: 10.1201/b19666.  Google Scholar

[37]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[38]

M. Souza and Y. Araújo, On nonlinear perturbations of a periodic fractional Schrödinger equation with critical exponential growth, Math. Nachr., 289 (2016), 610-625.  doi: 10.1002/mana.201500120.  Google Scholar

[39]

P. Stinga and B. Volzone, Fractional semilinear Neumann problems arising from a fractional Keller-Segel model, Calc. Var., 54 (2015), 1009-1042.  doi: 10.1007/s00526-014-0815-9.  Google Scholar

[40]

K. TengK. Wang and R. Wang, A sign-changing solution for nonlinear problems involving the fractional Laplacian, Electron. J. Differ. Equ., 2015 (2015), 1-12.   Google Scholar

[41]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

C. O. Alves, Existence of a positive solution for a nonlinear elliptic equation with saddle-like potential and nonlinearity with exponential critical growth in $\mathbb{R}^2$, Milan J. Math., 84 (2016), 1-22.  doi: 10.1007/s00032-015-0247-9.  Google Scholar

[2]

C. O. Alves, Multiplicity of solutions for a class of elliptic problem in $\mathbb{R}^2$ with Neumann conditions, J. Differ. Equ., 219 (2005), 20-39.  doi: 10.1016/j.jde.2004.11.010.  Google Scholar

[3]

C. O. AlvesJ. M. do Ó and O. H. Miyagaki, On nonlinear perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical growth, Nonlinear Anal., 56 (2004), 781-791.  doi: 10.1016/j.na.2003.06.003.  Google Scholar

[4]

C. O. Alves, P. C. Carrião and E. S. Medeiros, Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions, Abstr. Appl. Anal.. 3 (2004), 251–268. doi: 10.1155/S1085337504310018.  Google Scholar

[5]

C. O. AlvesG. M. Figueiredo and G. Siciliano, Ground state solutions for fractional scalar field equations under a general critical nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 2199-2215.  doi: 10.3934/cpaa.2019099.  Google Scholar

[6]

C. O. AlvesJ. M. do Ó and O. H. Miyagaki, Concentration phenomena for fractional elliptic equations involving exponential critical growth, Adv. Nonlinear Stud., 16 (2016), 843-861.  doi: 10.1515/ans-2016-0097.  Google Scholar

[7]

C. O. AlvesG. M. Bisci and C. T. Ledesma, Existence of positive solutions for a class of fractional elliptic problem in exterior domain, J. Differ. Equ., 268 (2020), 7183-7219.  doi: 10.1016/j.jde.2019.11.068.  Google Scholar

[8]

C. O. Alves and C. T. Ledesma, Fractional elliptic problem in exterior domains with nonlocal Neumann boundary condition, Nonlinear Anal., 195 (2020), 111732. doi: 10.1016/j.na.2019.111732.  Google Scholar

[9]

C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method, Calc. Var., 55 (2016), 47. doi: 10.1007/s00526-016-0983-x.  Google Scholar

[10]

C. O. Alves and V. Ambrosio, A multiplicity result for a nonlinear fractional Schrödinger equation in $\mathbb{R}^N$ without the Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 466 (2018), 498-522.  doi: 10.1016/j.jmaa.2018.06.005.  Google Scholar

[11]

C. O. Alves and M. A. S. Souto, Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains, Z. Angew. Math. Phys., 65 (2014), 1153-1166.  doi: 10.1007/s00033-013-0376-3.  Google Scholar

[12]

V. Ambrosio, On a fractional magnetic Schrödinger equation in $\mathbb{R}$ with exponential critical growth, Nonlinear Anal., 183 (2019), 117-148.  doi: 10.1016/j.na.2019.01.016.  Google Scholar

[13]

T. BartschT. Weth and M. Willem, Partial symmetry of least energy nodal solutions to some variational problems, J. Anal. Math., 96 (2005), 1-18.  doi: 10.1007/BF02787822.  Google Scholar

[14]

V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.  doi: 10.1007/BF00282048.  Google Scholar

[15]

C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Springer International Publishing Switzerland, 2016. doi: 10.1007/978-3-319-28739-3.  Google Scholar

[16]

D. Cao, Multiple solutions for a Neumann problem in an exterior domain, Commun. Partial Differ. Equ., 18 (1993), 687-700.  doi: 10.1080/03605309308820945.  Google Scholar

[17]

X. Chang and Z. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differ. Equ., 256 (2014), 2965-2992.  doi: 10.1016/j.jde.2014.01.027.  Google Scholar

[18]

G. Chen, Singularly perturbed Neumann problem for fractional Schrödinger equations, Sci. China Math., 61 (2018), 695-708.  doi: 10.1007/s11425-016-0420-2.  Google Scholar

[19]

F. Demengel and G. Demengel, Functional Spaces for Theory of Elliptic Partial Differential Equations, Springer-Verlag London Limited, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[20]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[21]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the whole of $\mathbb{R}^N$, Edizioni della Normale, Pisa, 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[22]

S. DipierroX. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377-416.  doi: 10.4171/RMI/942.  Google Scholar

[23]

M. Esteban, Nonsymmetric ground state of symmetric variational problems, Commun. Pure Appl. Math., XLIV (1991), 259-274.  doi: 10.1002/cpa.3160440205.  Google Scholar

[24]

P. FelmerA. Quaas and J. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional laplacian, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[25]

P. Felmer and C. Torres, Non-linear Schrödinger equation with non-local regional diffusion, Calc. Var., 54 (2015), 75-98.  doi: 10.1007/s00526-014-0778-x.  Google Scholar

[26]

R. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[27]

R. FrankE. Lenzmann and L. Silvestre, Uniqueness of Radial Solutions for the Fractional Laplacian, Commun. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[28]

A. Iannizzotto and M. Squassina, $1/2$-Laplacian problems with exponential nonlinearity, J. Math. Anal. Appl., 414 (2014), 372-385.  doi: 10.1016/j.jmaa.2013.12.059.  Google Scholar

[29]

A. IannizzottoS. Mosconi and M. Squassina, $H^s$ versus $C^0$ - weighted minimizers, Nonlinear Differ. Equ. Appl., 22 (2015), 477-497.  doi: 10.1007/s00030-014-0292-z.  Google Scholar

[30]

H. KozonoT. Sato and H. Wadade, Upper bound of the best constant of a Trudinger-Moser inequality and its application to a Gagliardo-Nirenberg inequality, Indiana Univ. Math. J., 55 (2006), 1951-1974.  doi: 10.1512/iumj.2006.55.2743.  Google Scholar

[31]

S. LulaA. Maalaoui and L. Martinazzi, A fractional Moser-Trudinger type inequality in one dimension and its critical point, Differ. Integral Equ., 29 (2016), 455-492.   Google Scholar

[32]

C. Miranda, Un'osservazione sul teorema di Brouwer, Boll. Unione Mat. Ital. Ser. II, Anno III, 19 (1940), 5-7.   Google Scholar

[33]

G. Molica Bisci, V. Rădulescu and R. Servadei, Variational Methods for Nonlocal Fractional Problems, University Printing House, Cambridge CB2 8BS, United Kingdom, 2016. doi: 10.1017/CBO9781316282397.  Google Scholar

[34]

T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.  doi: 10.1006/jfan.1995.1012.  Google Scholar

[35]

J. M. do ÓO. H. Miyagaki and M. Squassina, Non-autonomous fractional problems with exponential growth, Nonlinear Differ. Equ. Appl., 22 (2015), 1395-1410.  doi: 10.1007/s00030-015-0327-0.  Google Scholar

[36]

C. Pozrikidis, The Fractional Laplacian, Taylor & Francis Group, LLC 2016. doi: 10.1201/b19666.  Google Scholar

[37]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.  doi: 10.1017/S0308210512001783.  Google Scholar

[38]

M. Souza and Y. Araújo, On nonlinear perturbations of a periodic fractional Schrödinger equation with critical exponential growth, Math. Nachr., 289 (2016), 610-625.  doi: 10.1002/mana.201500120.  Google Scholar

[39]

P. Stinga and B. Volzone, Fractional semilinear Neumann problems arising from a fractional Keller-Segel model, Calc. Var., 54 (2015), 1009-1042.  doi: 10.1007/s00526-014-0815-9.  Google Scholar

[40]

K. TengK. Wang and R. Wang, A sign-changing solution for nonlinear problems involving the fractional Laplacian, Electron. J. Differ. Equ., 2015 (2015), 1-12.   Google Scholar

[41]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[5]

Lidan Wang, Lihe Wang, Chunqin Zhou. Classification of positive solutions for fully nonlinear elliptic equations in unbounded cylinders. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1241-1261. doi: 10.3934/cpaa.2021019

[6]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[7]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[8]

Bruno Premoselli. Einstein-Lichnerowicz type singular perturbations of critical nonlinear elliptic equations in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021069

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[10]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[11]

Zhang Chao, Minghua Yang. BMO type space associated with Neumann operator and application to a class of parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021104

[12]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021037

[13]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[14]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[15]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[16]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[18]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[19]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[20]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

2019 Impact Factor: 1.105

Article outline

[Back to Top]