\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Compactness of the complex Green operator on non-pseudoconvex CR manifolds

  • * Corresponding author

    * Corresponding author
This work was supported by a grant from the Simons Foundation (707123, ASR)
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we investigate the compactness theory of the complex Green operator on smooth, embedded, orientable CR manifolds of hypersurface type that satisfy the weak $ Y(q) $ condition. The sufficient condition that we define is an adaption of the CR-$ P_q $ property for weak $ Y(q) $ manifolds and does not require that the CR manifold is the boundary of a domain.

    We also provide several non-pseudoconvex examples (and a level $ q $) for which the complex Green operator is compact.

    Mathematics Subject Classification: Primary: 32W10, Secondary: 32F17, 32V20, 35A27, 35N15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. Basener, Nonlinear Cauchy-Riemann equations and $q$-pseudoconvexity, Duke Math. J., 43 (1976), 203-213. 
    [2] S. Biard and E. Straube, $L^2$-Sobolev theory for the complex Green operator, Internat. J. Math., 28 (2017), 1740006, 31. doi: 10.1142/S0129167X17400067.
    [3] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1991.
    [4] D. Catlin, Global regularity of the $\bar\partial$-Neumann problem, in Complex analysis of several variables (Madison, Wis., 1982), Proc. Sympos. Pure Math., 41, Amer. Math. Soc., Providence, RI, 1984, 39-49. doi: 10.1090/pspum/041/740870.
    [5] S. C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, vol. 19 of Studies in Advanced Mathematics, American Mathematical Society, 2001. doi: 10.11650/twjm/1500405913.
    [6] J. Coacalle and A. Raich, Closed range estimates for $\bar\partial_b$ on CR manifolds of hypersurface type, J. Geom. Anal., 31 (2021), 366-394.  doi: 10.1007/s12220-019-00268-2.
    [7] R. Diaz, Necessary conditions for subellipticity of ${\Box}_b$ on pseudoconvex domains, Commun. Partial Differ. Equ., 11 (1986), 1-61.  doi: 10.1080/03605308608820417.
    [8] R. Diaz, Necessary conditions for local subellipticity of $\square_b$ on CR manifolds, J. Differ. Geom., 29 (1989), 389-419. 
    [9] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann Complex, vol. 75 of Ann. of Math. Stud., Princeton University Press, Princeton, New Jersey, 1972.
    [10] P. Harrington and A. Raich, Regularity results for $\bar\partial_b$ on CR-manifolds of hypersurface type, Commun. Partial Differ. Equ., 36 (2011), 134-161.  doi: 10.1080/03605302.2010.498855.
    [11] P. Harrington and A. Raich, Closed range for $\bar\partial$ and $\bar\partial_b$ on bounded hypersurfaces in Stein manifolds, Ann. Inst. Fourier (Grenoble), 65 (2015), 1711-1754. 
    [12] P. S. HarringtonM. Peloso and A. Raich, Regularity equivalence of the Szegö projection and the complex Green operator, Proc. Amer. Math. Soc., 143 (2015), 353-367.  doi: 10.1090/S0002-9939-2014-12393-8.
    [13] P. S. Harrington and A. Raich, Closed range of $ \bar\partial$ in $L^2$-Sobolev spaces on unbounded domains in $ \mathbb C^n$, J. Math. Anal. Appl., 459 (2018), 1040-1461.  doi: 10.1016/j.jmaa.2017.11.017.
    [14] R. A. Horn and  C. R. JohnsonMatrix Analysis, Cambridge University Press, Cambridge, 1985.  doi: 10.1017/CBO9780511810817.
    [15] T. KhanhS. Pinton and G. Zampieri, Compactness estimates for $\square_{b}$ on a CR manifold, Proc. Amer. Math. Soc., 140 (2012), 3229-3236. 
    [16] K. Koenig, A parametrix for the $\overline\partial$-Neumann problem on pseudoconvex domains of finite type, J. Funct. Anal., 216 (2004), 243-302.  doi: 10.1016/j.jfa.2004.06.004.
    [17] S. Munasinghe and E. Straube, Geometric sufficient conditions for compactness of the complex Green operator, J. Geom. Anal., 22 (2012), 1007-1026.  doi: 10.1007/s12220-011-9226-8.
    [18] A. Raich, Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann., 348 (2010), 81-117.  doi: 10.1007/s00208-009-0470-1.
    [19] A. Raich and E. Straube, Compactness of the complex Green operator, Math. Res. Lett., 15 (2008), 761-778.  doi: 10.4310/MRL.2008.v15.n4.a13.
    [20] E. Straube, Lectures on the ${\mathcal{L}}^2$-Sobolev Theory of the $\bar\partial$-Neumann Problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. doi: 10.4171/076.
    [21] E. J. Straube, The complex Green operator on CR-submanifolds of $\mathbb{C}^n$ of hypersurface type: compactness, Trans. Amer. Math. Soc., 364 (2012), 4107-4125.  doi: 10.1090/S0002-9947-2012-05510-3.
  • 加载中
SHARE

Article Metrics

HTML views(396) PDF downloads(199) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return