June  2021, 20(6): 2139-2154. doi: 10.3934/cpaa.2021061

Compactness of the complex Green operator on non-pseudoconvex CR manifolds

1. 

Universidade Federal de São Carlos, Departamento de Matemática, Rodovia Washington Luis, Km 235 - Caixa Postal 676, São Carlos, Brazil

2. 

Department of Mathematical Sciences, SCEN 327, 1 University of Arkansas, Fayetteville, AR 72701, USA

* Corresponding author

Received  May 2020 Revised  February 2021 Published  June 2021 Early access  April 2021

Fund Project: This work was supported by a grant from the Simons Foundation (707123, ASR)

In this paper, we investigate the compactness theory of the complex Green operator on smooth, embedded, orientable CR manifolds of hypersurface type that satisfy the weak $ Y(q) $ condition. The sufficient condition that we define is an adaption of the CR-$ P_q $ property for weak $ Y(q) $ manifolds and does not require that the CR manifold is the boundary of a domain.

We also provide several non-pseudoconvex examples (and a level $ q $) for which the complex Green operator is compact.

Citation: Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2139-2154. doi: 10.3934/cpaa.2021061
References:
[1]

R. Basener, Nonlinear Cauchy-Riemann equations and $q$-pseudoconvexity, Duke Math. J., 43 (1976), 203-213. 

[2]

S. Biard and E. Straube, $L^2$-Sobolev theory for the complex Green operator, Internat. J. Math., 28 (2017), 1740006, 31. doi: 10.1142/S0129167X17400067.

[3]

A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1991.

[4]

D. Catlin, Global regularity of the $\bar\partial$-Neumann problem, in Complex analysis of several variables (Madison, Wis., 1982), Proc. Sympos. Pure Math., 41, Amer. Math. Soc., Providence, RI, 1984, 39-49. doi: 10.1090/pspum/041/740870.

[5]

S. C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, vol. 19 of Studies in Advanced Mathematics, American Mathematical Society, 2001. doi: 10.11650/twjm/1500405913.

[6]

J. Coacalle and A. Raich, Closed range estimates for $\bar\partial_b$ on CR manifolds of hypersurface type, J. Geom. Anal., 31 (2021), 366-394.  doi: 10.1007/s12220-019-00268-2.

[7]

R. Diaz, Necessary conditions for subellipticity of ${\Box}_b$ on pseudoconvex domains, Commun. Partial Differ. Equ., 11 (1986), 1-61.  doi: 10.1080/03605308608820417.

[8]

R. Diaz, Necessary conditions for local subellipticity of $\square_b$ on CR manifolds, J. Differ. Geom., 29 (1989), 389-419. 

[9]

G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann Complex, vol. 75 of Ann. of Math. Stud., Princeton University Press, Princeton, New Jersey, 1972.

[10]

P. Harrington and A. Raich, Regularity results for $\bar\partial_b$ on CR-manifolds of hypersurface type, Commun. Partial Differ. Equ., 36 (2011), 134-161.  doi: 10.1080/03605302.2010.498855.

[11]

P. Harrington and A. Raich, Closed range for $\bar\partial$ and $\bar\partial_b$ on bounded hypersurfaces in Stein manifolds, Ann. Inst. Fourier (Grenoble), 65 (2015), 1711-1754. 

[12]

P. S. HarringtonM. Peloso and A. Raich, Regularity equivalence of the Szegö projection and the complex Green operator, Proc. Amer. Math. Soc., 143 (2015), 353-367.  doi: 10.1090/S0002-9939-2014-12393-8.

[13]

P. S. Harrington and A. Raich, Closed range of $ \bar\partial$ in $L^2$-Sobolev spaces on unbounded domains in $ \mathbb C^n$, J. Math. Anal. Appl., 459 (2018), 1040-1461.  doi: 10.1016/j.jmaa.2017.11.017.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.  doi: 10.1017/CBO9780511810817.
[15]

T. KhanhS. Pinton and G. Zampieri, Compactness estimates for $\square_{b}$ on a CR manifold, Proc. Amer. Math. Soc., 140 (2012), 3229-3236. 

[16]

K. Koenig, A parametrix for the $\overline\partial$-Neumann problem on pseudoconvex domains of finite type, J. Funct. Anal., 216 (2004), 243-302.  doi: 10.1016/j.jfa.2004.06.004.

[17]

S. Munasinghe and E. Straube, Geometric sufficient conditions for compactness of the complex Green operator, J. Geom. Anal., 22 (2012), 1007-1026.  doi: 10.1007/s12220-011-9226-8.

[18]

A. Raich, Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann., 348 (2010), 81-117.  doi: 10.1007/s00208-009-0470-1.

[19]

A. Raich and E. Straube, Compactness of the complex Green operator, Math. Res. Lett., 15 (2008), 761-778.  doi: 10.4310/MRL.2008.v15.n4.a13.

[20]

E. Straube, Lectures on the ${\mathcal{L}}^2$-Sobolev Theory of the $\bar\partial$-Neumann Problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. doi: 10.4171/076.

[21]

E. J. Straube, The complex Green operator on CR-submanifolds of $\mathbb{C}^n$ of hypersurface type: compactness, Trans. Amer. Math. Soc., 364 (2012), 4107-4125.  doi: 10.1090/S0002-9947-2012-05510-3.

show all references

References:
[1]

R. Basener, Nonlinear Cauchy-Riemann equations and $q$-pseudoconvexity, Duke Math. J., 43 (1976), 203-213. 

[2]

S. Biard and E. Straube, $L^2$-Sobolev theory for the complex Green operator, Internat. J. Math., 28 (2017), 1740006, 31. doi: 10.1142/S0129167X17400067.

[3]

A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, Florida, 1991.

[4]

D. Catlin, Global regularity of the $\bar\partial$-Neumann problem, in Complex analysis of several variables (Madison, Wis., 1982), Proc. Sympos. Pure Math., 41, Amer. Math. Soc., Providence, RI, 1984, 39-49. doi: 10.1090/pspum/041/740870.

[5]

S. C. Chen and M. C. Shaw, Partial Differential Equations in Several Complex Variables, vol. 19 of Studies in Advanced Mathematics, American Mathematical Society, 2001. doi: 10.11650/twjm/1500405913.

[6]

J. Coacalle and A. Raich, Closed range estimates for $\bar\partial_b$ on CR manifolds of hypersurface type, J. Geom. Anal., 31 (2021), 366-394.  doi: 10.1007/s12220-019-00268-2.

[7]

R. Diaz, Necessary conditions for subellipticity of ${\Box}_b$ on pseudoconvex domains, Commun. Partial Differ. Equ., 11 (1986), 1-61.  doi: 10.1080/03605308608820417.

[8]

R. Diaz, Necessary conditions for local subellipticity of $\square_b$ on CR manifolds, J. Differ. Geom., 29 (1989), 389-419. 

[9]

G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann Complex, vol. 75 of Ann. of Math. Stud., Princeton University Press, Princeton, New Jersey, 1972.

[10]

P. Harrington and A. Raich, Regularity results for $\bar\partial_b$ on CR-manifolds of hypersurface type, Commun. Partial Differ. Equ., 36 (2011), 134-161.  doi: 10.1080/03605302.2010.498855.

[11]

P. Harrington and A. Raich, Closed range for $\bar\partial$ and $\bar\partial_b$ on bounded hypersurfaces in Stein manifolds, Ann. Inst. Fourier (Grenoble), 65 (2015), 1711-1754. 

[12]

P. S. HarringtonM. Peloso and A. Raich, Regularity equivalence of the Szegö projection and the complex Green operator, Proc. Amer. Math. Soc., 143 (2015), 353-367.  doi: 10.1090/S0002-9939-2014-12393-8.

[13]

P. S. Harrington and A. Raich, Closed range of $ \bar\partial$ in $L^2$-Sobolev spaces on unbounded domains in $ \mathbb C^n$, J. Math. Anal. Appl., 459 (2018), 1040-1461.  doi: 10.1016/j.jmaa.2017.11.017.

[14] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.  doi: 10.1017/CBO9780511810817.
[15]

T. KhanhS. Pinton and G. Zampieri, Compactness estimates for $\square_{b}$ on a CR manifold, Proc. Amer. Math. Soc., 140 (2012), 3229-3236. 

[16]

K. Koenig, A parametrix for the $\overline\partial$-Neumann problem on pseudoconvex domains of finite type, J. Funct. Anal., 216 (2004), 243-302.  doi: 10.1016/j.jfa.2004.06.004.

[17]

S. Munasinghe and E. Straube, Geometric sufficient conditions for compactness of the complex Green operator, J. Geom. Anal., 22 (2012), 1007-1026.  doi: 10.1007/s12220-011-9226-8.

[18]

A. Raich, Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann., 348 (2010), 81-117.  doi: 10.1007/s00208-009-0470-1.

[19]

A. Raich and E. Straube, Compactness of the complex Green operator, Math. Res. Lett., 15 (2008), 761-778.  doi: 10.4310/MRL.2008.v15.n4.a13.

[20]

E. Straube, Lectures on the ${\mathcal{L}}^2$-Sobolev Theory of the $\bar\partial$-Neumann Problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. doi: 10.4171/076.

[21]

E. J. Straube, The complex Green operator on CR-submanifolds of $\mathbb{C}^n$ of hypersurface type: compactness, Trans. Amer. Math. Soc., 364 (2012), 4107-4125.  doi: 10.1090/S0002-9947-2012-05510-3.

[1]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[2]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic and Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[3]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems and Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[4]

Alonso Sepúlveda, Guilherme Tizziotti. Weierstrass semigroup and codes over the curve $y^q + y = x^{q^r + 1}$. Advances in Mathematics of Communications, 2014, 8 (1) : 67-72. doi: 10.3934/amc.2014.8.67

[5]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[6]

Harry Crimmins. Stability of hyperbolic Oseledets splittings for quasi-compact operator cocycles. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2795-2857. doi: 10.3934/dcds.2022001

[7]

Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665

[8]

Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057

[9]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[10]

Laurent Amour, Jérémy Faupin. Inverse spectral results in Sobolev spaces for the AKNS operator with partial informations on the potentials. Inverse Problems and Imaging, 2013, 7 (4) : 1115-1122. doi: 10.3934/ipi.2013.7.1115

[11]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems and Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[12]

Shingo Takeuchi. Partial flat core properties associated to the $p$-laplace operator. Conference Publications, 2007, 2007 (Special) : 965-973. doi: 10.3934/proc.2007.2007.965

[13]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems and Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[14]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems and Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[15]

Horst R. Thieme. Positive perturbation of operator semigroups: growth bounds, essential compactness and asynchronous exponential growth. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 735-764. doi: 10.3934/dcds.1998.4.735

[16]

David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037

[17]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[18]

Vittorio Martino. On the characteristic curvature operator. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1911-1922. doi: 10.3934/cpaa.2012.11.1911

[19]

Lijian Jiang, Craig C. Douglas. Analysis of an operator splitting method in 4D-Var. Conference Publications, 2009, 2009 (Special) : 394-403. doi: 10.3934/proc.2009.2009.394

[20]

Yulong Li, Aleksey S. Telyakovskiy, Emine Çelik. Analysis of one-sided 1-D fractional diffusion operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1673-1690. doi: 10.3934/cpaa.2022039

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (171)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]