This article introduces a new and general construction of discrete Hodge operator in the context of Discrete Exterior Calculus (DEC). This discrete Hodge operator permits to circumvent the well-centeredness limitation on the mesh with the popular diagonal Hodge. It allows a dual mesh based on any interior point, such as the incenter or the barycenter. It opens the way towards mesh-optimized discrete Hodge operators. In the particular case of a well-centered triangulation, it reduces to the diagonal Hodge if the dual mesh is circumcentric. Based on an analytical development, this discrete Hodge does not make use of Whitney forms, and is exact on piecewise constant forms, whichever interior point is chosen for the construction of the dual mesh. Numerical tests oriented to the resolution of fluid mechanics problems and thermal transfer are carried out. Convergence on various types of mesh is investigated. Flat and non-flat domains are considered.
Citation: |
Figure 6.
Primal simplices and their arbitrary-centered dual cells in a 2D mesh composed of a single triangle. The
Table 1.
Table 2.
Poisson equation with with
Acute mesh | Right mesh | |
Circumcentric dual | 1.995 | – |
Barycentric dual | 1.985 | 1.923 |
Incentric dual | 1.992 | 1.921 |
Table 3.
Poisson equation with
Acute mesh | Right mesh | |
Circumcentric dual | 1.975 | – |
Barycentric dual | 1.979 | 1.809 |
Incentric dual | 1.982 | 1.840 |
Table 4. Poiseuille flow: convergence rates
Acute mesh | Right mesh | |||
Stream function | Velocity | Stream function | Velocity | |
Circumcentric | 2.006 | 1.421 | – | – |
Barycentric | 2.184 | 1.106 | 1.989 | 1.553 |
Incentric | 2.185 | 1.096 | 1.989 | 1.539 |
Table 5. Taylor-Green vortex: convergence rates
Acute mesh | Right mesh | |||
Stream function | Velocity | Stream function | Velocity | |
Circumcentric | 1.996 | 1.187 | – | – |
Barycentric | 2.065 | 1.130 | 2.018 | 1.735 |
Incentric | 2.088 | 1.118 | 2.067 | 1.736 |
Table 6. Traveling wave. Mean relative error
Dual mesh | Stream function | Velocity | Temperature |
Barycentric | |||
Incentric |
Table 7. Unstructured meshes. Convergence rates of the stream function and the temperature
Stream function | Temperature | |
Convergence rate | 1.3690 | 1.1430 |
Table 8. Relative errors on mesh (e) of Table 18
Stream function | Temperature | Velocity | |
Relative error |
Table 9. Convergence rate
Stream function | Temperature | |
15% non-Delaunay meshes | 1.9005 | 1.5159 |
25% non-Delaunay meshes | 1.6729 | 1.2154 |
50% non-Delaunay meshes | 1.6591 | 0.8660 |
[1] |
P. Alotto and I. Perugia, Matrix properties of a vector potential cell method for magnetostatics, IEEE Trans. Magnet., 40 (2004), 1045-1048.
![]() |
[2] |
D. Arnold, Finite Element Exterior Calculus, SIAM-Society for Industrial and Applied Mathematics, 2018.
doi: 10.1137/1.9781611975543.ch1.![]() ![]() ![]() |
[3] |
D. Arnold, R. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15 (2006), 1-155.
doi: 10.1017/S0962492906210018.![]() ![]() ![]() |
[4] |
D. Arnold, R. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bullet. Amer. Math. Soc., 47 (2010), 281-354.
doi: 10.1090/S0273-0979-10-01278-4.![]() ![]() ![]() |
[5] |
B. Auchmann and S. Kurz, A geometrically defined discrete Hodge operator on simplicial cells, IEEE Trans. Magnet., 42 (2006), 643-646.
![]() |
[6] |
C. Blanes and S. Fernando, A Concise Introduction to Geometric Numerical Integration, CRC Press, 2016.
![]() ![]() |
[7] |
P. Bochev and J. Hyman, Compatible Spatial Discretizations, Springer, 2006.
doi: 10.1007/0-387-38034-5_5.![]() ![]() ![]() |
[8] |
A. Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism, Science, Measurement and Technology, IEE Proceedings A, 135 (1988), 493-500.
![]() ![]() |
[9] |
A. Bossavit, Computational electromagnetism. Variational formulations, complementarity, edge elements, Academic Press, 1998.
![]() ![]() |
[10] |
A. Bossavit, On the geometry of electromagnetism: (1) Affine space, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 17-28.
![]() ![]() |
[11] |
A. Bossavit, On the geometry of electromagnetism: (2) Geometrical objects, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 114-123.
![]() ![]() |
[12] |
A. Bossavit, On the geometry of electromagnetism: (3) Integration, Stokes, Faraday's law, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 233-240.
![]() ![]() |
[13] |
A. Bossavit, On the geometry of electromagnetism: (4) Maxwell's house, J. Jpn. Soc. Appl. Electrom. Mech., 6 (1998), 318-326.
![]() ![]() |
[14] |
A. Bossavit, Computational electromagnetism and geometry : (3) Convergence, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 401-408.
![]() ![]() |
[15] |
A. Bossavit, Computational electromagnetism and geometry: (1) Network equations, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 150-159.
![]() ![]() |
[16] |
A. Bossavit, Computational electromagnetism and geometry: (2) Network constitutive laws, J. Jpn. Soc. Appl. Electrom. Mech., 7 (1999), 204-301.
![]() ![]() |
[17] |
A. Bossavit, Computational electromagnetism and geometry : (4): From degrees of freedom to fields, J. Jpn. Soc. Appl. Electrom. Mech., 8 (2000), 102-109.
![]() ![]() |
[18] |
A. Bossavit, Computational electromagnetism and geometry : (5): The Galerkin Hodge, J. Jpn. Soc. Appl. Electrom. Mech., 8 (2000), 203-209.
![]() ![]() |
[19] |
A. Bossavit, Discretization of electromagnetic problems: The "generalized finite differences" approach, in Numer. Method. Electrom., Elsevier, 2005, 105-197.
![]() ![]() |
[20] |
C. Cassidy and G. Lord, A Square Acutely Triangulated, Baywood Publishing Co.. Inc., 1980.
![]() ![]() |
[21] |
M. Cinalli, F. Edelvik, R. Schuhmann and T. Weiland, Consistent material operators for tetrahedral grids based on geometrical principles, Int. J. Numer. Model., 17 (2004), 487-507.
![]() |
[22] |
K. Crane, F. de Goes, M. Desbrun and P. Schr$\ddot{o}$der, Digital geometry processing with discrete exterior calculus, in ACM SIGGRAPH 2013 courses, SIGGRAPH'13, ACM, 2013.
![]() |
[23] |
M. Desbrun, A. Hirani, M. Leok and J. Marsden, Discrete exterior calculus, arXivmath/0508341.
![]() |
[24] |
S. Elcott, Y. Tong, E. Kanso, P. Schr$\ddot{o}$der and M. Desbrun, Stable, circulation-preserving, simplicial fluids, ACM Trans. Graph., 26 (2015), 377-388.
![]() |
[25] |
M. Fecko, Differential Geometry and Lie Groups for Physicists, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511755590.![]() ![]() ![]() |
[26] |
C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Method. Eng., 79 (2009), 1309-1331.
doi: 10.1002/nme.2579.![]() ![]() ![]() |
[27] |
A. Gillette, Notes on Discrete Exterior Calculus, Technical report, University of Texas at Austin, 2009.
![]() |
[28] |
E. Grispun, P. Schr$\ddot{o}$der and M. Desbrun, Discrete differential geometry: An applied introduction, in ACM SIGGRAPH 2005 course notes, SIGGRAPH'05, ACM, 2005.
![]() |
[29] |
W. Hairer, G. Wanner and C. Lubich, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition, Springer Series in Computational Mathematics, Springer, 2006.
![]() ![]() |
[30] |
R. Hiptmair, Discrete Hodge operators, Numerische Mathematik, 90 (2001), 265-289.
doi: 10.1007/s002110100295.![]() ![]() ![]() |
[31] |
A. Hirani, Discrete Exterior Calculus, Phd thesis, California Institute of Technology, Pasadena, CA, USA, 2003.
![]() ![]() |
[32] |
A. Hirani, K. Kalyanaraman and E. VanderZee, Delaunay Hodge star, Computer-Aided Design, 45 (2013), 540-544.
doi: 10.1016/j.cad.2012.10.038.![]() ![]() ![]() |
[33] |
A. Hirani, K. Nakshatrala and J. Chaudhry, Numerical method for Darcy flow derived using discrete exterior calculus, International Journal for Computational Methods in Engineering Science and Mechanics, 16 (2015), 151-169.
doi: 10.1080/15502287.2014.977500.![]() ![]() ![]() |
[34] |
J. Lee, Introduction to Smooth Manifolds, 2nd edition, Graduate Texts in Mathematics, Springer, 2012.
![]() ![]() |
[35] |
J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Springer Verlag, 1999.
doi: 10.1007/978-0-387-21792-5.![]() ![]() ![]() |
[36] |
M. Mohamed, A. Hirani and R. Samtaney, Comparison of discrete Hodge star operators for surfaces, Computer-Aided Design, 78 (2016), 118-125.
![]() |
[37] |
M. Mohamed, A. Hirani and R. Samtaney, Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes, J. Comput. Phys., 312 (2016), 175-191.
doi: 10.1016/j.jcp.2016.02.028.![]() ![]() ![]() |
[38] |
M. Mohamed, A. Hirani and R. Samtaney, Numerical convergence of discrete exterior calculus on arbitrary surface meshes, Int. J. Comput. Method. Eng. Sci. Mech., 19 (2018), 194-206.
doi: 10.1080/15502287.2018.1446196.![]() ![]() ![]() |
[39] |
S. Morita, Geometry of Differential Forms, American Mathematical Society, 2001.
doi: 10.1090/mmono/201.![]() ![]() ![]() |
[40] |
P. Mullen, P. Memari, F. Goes and M. Desbrun, HOT: Hodge-optimized triangulations, ACM Trans. Graph., 30 (2011).
![]() |
[41] |
I. Nitschke, S. Reuther and A. Voigt, Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation, Springer International Publishing, 2017.
![]() ![]() |
[42] |
A. R, M. JE and R. R., Manifolds, Tensor Analysis and Applications, Springer-Verlag, 1988.
doi: 10.1007/978-1-4612-1029-0.![]() ![]() ![]() |
[43] |
V. Rajan, Optimality of the Delaunay triangulation in $\mathbb{R}^d$, Discrete Comput. Geom., 12 (1994), 189-202.
doi: 10.1007/BF02574375.![]() ![]() ![]() |
[44] |
D. Razafindralandy, A. Hamdouni and M. Chhay, A review of some geometric integrators, Adv. Model. Simul. Eng. Sci., 5 (2018), 16.
![]() |
[45] |
D. Razafindralandy, V. Salnikov, A. Hamdouni and A. Deeb, Some robust integrators for large time dynamics, Adv. Model. Simul. Eng. Sci., 6 (2019), 5.
![]() |
[46] |
V. Salnikov and A. Hamdouni, From modelling of systems with constraints to generalized geometry and back to numerics, J. Appl. Math. Mech., 99 (2019), e201800218.
doi: 10.1002/zamm.201800218.![]() ![]() ![]() |
[47] |
M. Spivak, A Comprehensive Introduction to Differential Geometry, 3rd edition, Publish or Perish, 1999.
![]() ![]() |
[48] |
T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques, IEEE Trans. Magnet., 35 (1999), 1494-1497.
![]() |
[49] |
E. VanderZee, A. Hirani, D. Guoy and E. Ramos, Well-centered triangulation, SIAM J. Sci. Comput., 31.
doi: 10.1137/090748214.![]() ![]() ![]() |
[50] |
H. Whitney, Geometric Integration Theory, Princeton University Press, 1957.
![]() ![]() |
[51] |
L. Yuan, Acute triangulations of trapezoids, Discrete Appl. Math., 158 (2010), 1121-1125.
doi: 10.1016/j.dam.2010.02.008.![]() ![]() ![]() |
[52] |
C. T. Zamfirescu, Survey of two-dimensional acute triangulations, Discrete Math., 313 (2013), 35-49.
doi: 10.1016/j.disc.2012.09.016.![]() ![]() ![]() |