
-
Previous Article
The two-component Novikov-type systems with peaked solutions and $ H^1 $-conservation law
- CPAA Home
- This Issue
-
Next Article
Expanding solutions of quasilinear parabolic equations
Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity
1. | Texas A & M University, College Station, TX, Institute for Information Transmission Problems, Moscow, Russia |
2. | Vienna University, Vienna, Austria, Institute for Information Transmission Problems, Moscow, Russia |
We obtain explicit characterization of orbital and spectral stability of solitary wave solutions to the $ {\bf{U}}(1) $-invariant 1D Klein–Gordon equation coupled to an anharmonic oscillator. We also give the complete analysis of the spectrum of the linearization at a solitary wave.
References:
[1] |
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2005.
doi: 10.1007/978-3-642-88201-2. |
[2] |
N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators, preprint, arXiv: 2101.11979. Google Scholar |
[3] |
V. Buslaev, A. Komech, E. Kopylova and D. Stuart,
On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33 (2008), 669-705.
doi: 10.1080/03605300801970937. |
[4] |
E. Csobo, F. Genoud, M. Ohta and and J. Royer,
Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials, J. Differ. Equ., 268 (2019), 353-388.
doi: 10.1016/j.jde.2019.08.015. |
[5] |
A. Comech and D. Pelinovsky,
Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.
doi: 10.1002/cpa.10104. |
[6] |
M. Grillakis, J. Shata and W. Strauss,
Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[7] |
A. Jensen and T. Kato,
Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.
|
[8] |
A. Komech and A. Komech,
Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142.
doi: 10.1007/s00205-006-0039-z. |
[9] |
A. Komech and A. Komech,
Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.
doi: 10.1016/j.anihpc.2008.03.005. |
[10] |
A. Komech, E. Kopylova and D. Stuart,
On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.
doi: 10.3934/cpaa.2012.11.1063. |
[11] |
A. Kolokolov,
Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14 (1973), 426-428.
doi: 10.1016/0021-8928(74)90131-2. |
[12] |
E. Kopylova,
On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3031-3046.
doi: 10.1016/j.na.2009.01.188. |
[13] |
E. Kopylova,
On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator, Appl. Anal., 89 (2010), 1467-1492.
doi: 10.1080/00036810903277176. |
[14] |
M. Murata,
Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.
doi: 10.1016/0022-1236(82)90084-2. |
[15] |
M. Ohta and G. Todorova,
Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931.
doi: 10.1137/050643015. |
show all references
References:
[1] |
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2005.
doi: 10.1007/978-3-642-88201-2. |
[2] |
N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators, preprint, arXiv: 2101.11979. Google Scholar |
[3] |
V. Buslaev, A. Komech, E. Kopylova and D. Stuart,
On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33 (2008), 669-705.
doi: 10.1080/03605300801970937. |
[4] |
E. Csobo, F. Genoud, M. Ohta and and J. Royer,
Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials, J. Differ. Equ., 268 (2019), 353-388.
doi: 10.1016/j.jde.2019.08.015. |
[5] |
A. Comech and D. Pelinovsky,
Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.
doi: 10.1002/cpa.10104. |
[6] |
M. Grillakis, J. Shata and W. Strauss,
Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.
doi: 10.1016/0022-1236(87)90044-9. |
[7] |
A. Jensen and T. Kato,
Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.
|
[8] |
A. Komech and A. Komech,
Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142.
doi: 10.1007/s00205-006-0039-z. |
[9] |
A. Komech and A. Komech,
Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.
doi: 10.1016/j.anihpc.2008.03.005. |
[10] |
A. Komech, E. Kopylova and D. Stuart,
On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.
doi: 10.3934/cpaa.2012.11.1063. |
[11] |
A. Kolokolov,
Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14 (1973), 426-428.
doi: 10.1016/0021-8928(74)90131-2. |
[12] |
E. Kopylova,
On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3031-3046.
doi: 10.1016/j.na.2009.01.188. |
[13] |
E. Kopylova,
On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator, Appl. Anal., 89 (2010), 1467-1492.
doi: 10.1080/00036810903277176. |
[14] |
M. Murata,
Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.
doi: 10.1016/0022-1236(82)90084-2. |
[15] |
M. Ohta and G. Todorova,
Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931.
doi: 10.1137/050643015. |


[1] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[2] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[3] |
Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023 |
[4] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[5] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[6] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[7] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[8] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[9] |
Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020 |
[10] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[11] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[12] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[13] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[14] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[15] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
[16] |
Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021019 |
[17] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[18] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[19] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[20] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
2019 Impact Factor: 1.105
Tools
Article outline
Figures and Tables
[Back to Top]