doi: 10.3934/cpaa.2021063

Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity

1. 

Texas A & M University, College Station, TX, Institute for Information Transmission Problems, Moscow, Russia

2. 

Vienna University, Vienna, Austria, Institute for Information Transmission Problems, Moscow, Russia

* Corresponding author

Received  August 2020 Revised  February 2021 Published  April 2021

Fund Project: The second author is supported by the Austrian Science Fund (FWF), Grant P 34177-N

We obtain explicit characterization of orbital and spectral stability of solitary wave solutions to the $ {\bf{U}}(1) $-invariant 1D Klein–Gordon equation coupled to an anharmonic oscillator. We also give the complete analysis of the spectrum of the linearization at a solitary wave.

Citation: Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021063
References:
[1]

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2005. doi: 10.1007/978-3-642-88201-2.  Google Scholar

[2]

N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators, preprint, arXiv: 2101.11979. Google Scholar

[3]

V. BuslaevA. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33 (2008), 669-705.  doi: 10.1080/03605300801970937.  Google Scholar

[4]

E. CsoboF. GenoudM. Ohta and and J. Royer, Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials, J. Differ. Equ., 268 (2019), 353-388.  doi: 10.1016/j.jde.2019.08.015.  Google Scholar

[5]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.  doi: 10.1002/cpa.10104.  Google Scholar

[6]

M. GrillakisJ. Shata and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[7]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.   Google Scholar

[8]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[9]

A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.  doi: 10.1016/j.anihpc.2008.03.005.  Google Scholar

[10]

A. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.  doi: 10.3934/cpaa.2012.11.1063.  Google Scholar

[11]

A. Kolokolov, Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14 (1973), 426-428.  doi: 10.1016/0021-8928(74)90131-2.  Google Scholar

[12]

E. Kopylova, On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3031-3046.  doi: 10.1016/j.na.2009.01.188.  Google Scholar

[13]

E. Kopylova, On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator, Appl. Anal., 89 (2010), 1467-1492.  doi: 10.1080/00036810903277176.  Google Scholar

[14]

M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.  doi: 10.1016/0022-1236(82)90084-2.  Google Scholar

[15]

M. Ohta and G. Todorova, Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931.  doi: 10.1137/050643015.  Google Scholar

show all references

References:
[1]

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2005. doi: 10.1007/978-3-642-88201-2.  Google Scholar

[2]

N. Boussaïd and A. Comech, Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schrödinger operators, preprint, arXiv: 2101.11979. Google Scholar

[3]

V. BuslaevA. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator, Commun. Partial Differ. Equ., 33 (2008), 669-705.  doi: 10.1080/03605300801970937.  Google Scholar

[4]

E. CsoboF. GenoudM. Ohta and and J. Royer, Stability of standing waves for a nonlinear Klein–Gordon equation with delta potentials, J. Differ. Equ., 268 (2019), 353-388.  doi: 10.1016/j.jde.2019.08.015.  Google Scholar

[5]

A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), 1565-1607.  doi: 10.1002/cpa.10104.  Google Scholar

[6]

M. GrillakisJ. Shata and W. Strauss, Stability theory of solitary waves in the presence of symmetry, J. Funct. Anal., 74 (1987), 160-197.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[7]

A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., 46 (1979), 583-611.   Google Scholar

[8]

A. Komech and A. Komech, Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field, Arch. Ration. Mech. Anal., 185 (2007), 105-142.  doi: 10.1007/s00205-006-0039-z.  Google Scholar

[9]

A. Komech and A. Komech, Global attraction to solitary waves for Klein–Gordon equation with mean field interaction, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 855-868.  doi: 10.1016/j.anihpc.2008.03.005.  Google Scholar

[10]

A. KomechE. Kopylova and D. Stuart, On asymptotic stability of solitons in a nonlinear Schrödinger equation, Commun. Pure Appl. Anal., 11 (2012), 1063-1079.  doi: 10.3934/cpaa.2012.11.1063.  Google Scholar

[11]

A. Kolokolov, Stability of the dominant mode of the nonlinear wave equation in a cubic medium, J. Appl. Mech. Tech. Phys., 14 (1973), 426-428.  doi: 10.1016/0021-8928(74)90131-2.  Google Scholar

[12]

E. Kopylova, On the asymptotic stability of solitary waves in the discrete Schrödinger equation coupled to a nonlinear oscillator, Nonlinear Analysis: Theory, Methods & Applications, 71 (2009), 3031-3046.  doi: 10.1016/j.na.2009.01.188.  Google Scholar

[13]

E. Kopylova, On asymptotic stability of solitary waves in discrete Klein–Gordon equation coupled to a nonlinear oscillator, Appl. Anal., 89 (2010), 1467-1492.  doi: 10.1080/00036810903277176.  Google Scholar

[14]

M. Murata, Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal., 49 (1982), 10-56.  doi: 10.1016/0022-1236(82)90084-2.  Google Scholar

[15]

M. Ohta and G. Todorova, Strong instability of standing waves for the nonlinear Klein–Gordon equation and the Klein–Gordon–Zakharov system, SIAM J. Math. Anal., 38 (2007), 1912-1931.  doi: 10.1137/050643015.  Google Scholar

Figure 1.  The relation between $ \lambda\in\sigma(H_\kappa(\omega)) $ and $ \Lambda\in\sigma(L_\kappa(\omega)) $ for $ \omega\in(-m,m)\setminus\{0\} $, $ \kappa>0 $
Figure 2.  Location of simple nonzero eigenvalues $ \pm\lambda $
[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[2]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[3]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[4]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[5]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[6]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[7]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[8]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[9]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[10]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[11]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[12]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[13]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[14]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[15]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[16]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[17]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[20]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]