This work concerns with the following Choquard equation
$ \begin{equation*} \begin{cases} -\Delta u+ u = (\int_{\Omega}\frac{u^2(y)}{|x-y|^{N-2}}dy)u &{\rm{in }}\; \Omega ,\\ u\in H_0^1(\Omega), \end{cases} \end{equation*} $
where $ \Omega\subseteq \mathbb{R}^{N} $ is an exterior domain with smooth boundary. We prove that the equation has at least one positive solution by variational and toplogical methods. Moreover, we establish a nonlocal version of global compactness result in unbounded domain.
Citation: |
[1] |
C. O. Alves, A. B. Nóbrega and M. Yang, Multi-bump solutions for Choquard equation with deepening potential well, Calc. Var. Partial Differ. Equ., 55 (2016), 48.
doi: 10.1007/s00526-016-0984-9.![]() ![]() ![]() |
[2] |
V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 99 (1987), 283-300.
doi: 10.1007/BF00282048.![]() ![]() ![]() |
[3] |
H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.![]() ![]() ![]() |
[4] |
L. Battaglia and J. Van Schaftingen, Groundstates of the Choquard equations with a sign-changing self-interaction potential, Z. Angew. Math. Phys., 69 (2018), 16pp.
doi: 10.1007/s00033-018-0975-0.![]() ![]() ![]() |
[5] |
M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107-135.
doi: 10.1016/j.jfa.2016.04.019.![]() ![]() ![]() |
[6] |
M. Ghimenti and D. Pagliarrdini, Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains, Calc. Var. Partial Differ. Equ., 58 (2019).
doi: 10.1007/s00526-019-1605-1.![]() ![]() ![]() |
[7] |
D. Goel and K. Sreenadh, Coron problem for nonlocal equations invloving Choquard nonlinearity, Adv. Nonlinear Stud., 20 (2020), 141-161.
doi: 10.1515/ans-2019-2064.![]() ![]() ![]() |
[8] |
D. Goel and K. Sreenadh, Critical growth elliptic problems involving Hardy-Littlewood-Sobolev critical exponent in non-contractible domains, Adv. Nonlinear Anal., 9 (2020), 803-835.
doi: 10.1515/anona-2020-0026.![]() ![]() ![]() |
[9] |
F. Gao and M. Yang, The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation, Sci. China Math., 61 (2018), 1219-1242.
doi: 10.1007/s11425-016-9067-5.![]() ![]() ![]() |
[10] |
F. Gao, E D. da Silva, M. Yang and J. Zhou, Existence of solutions for critical Choquard equations via the concentration-compactness method, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 921-954.
doi: 10.1017/prm.2018.131.![]() ![]() ![]() |
[11] |
L. Guo, T. Hu, S. Peng and W. Shuai, Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent, Calc. Var. Partial Differ. Equ., 58 (2019), 34 pp.
doi: 10.1007/s00526-019-1585-1.![]() ![]() ![]() |
[12] |
E.H. Lieb and M. Loss, Analysis, American Mathematical Society, Providence, RI, second ed., 2001.
doi: 10.1090/gsm/014.![]() ![]() ![]() |
[13] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1976/1977), 93-105.
doi: 10.1002/sapm197757293.![]() ![]() ![]() |
[14] |
P. L. Lions, The Choquard equation and related questions, Nonlinear Anal., 4 (1980), 1063-1072.
doi: 10.1016/0362-546X(80)90016-4.![]() ![]() ![]() |
[15] |
P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.
![]() ![]() |
[16] |
X. Liu, S. Ma and X. Zhang, Infinitely many bound state solutions of Choquard equations with potentials, Z. Angew. Math. Phys., 69 (2018), 118.
doi: 10.1007/s00033-018-1015-9.![]() ![]() ![]() |
[17] |
V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773-813.
doi: 10.1007/s11784-016-0373-1.![]() ![]() ![]() |
[18] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[19] |
V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.
doi: 10.1090/S0002-9947-2014-06289-2.![]() ![]() ![]() |
[20] |
V. Moroz and J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differ. Equ., 254 (2013), 3089-3145.
doi: 10.1016/j.jde.2012.12.019.![]() ![]() ![]() |
[21] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12pp.
doi: 10.1142/S0219199715500054.![]() ![]() ![]() |
[22] |
L. Ma and Z. Lin, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[23] |
I.M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical Quantum Gravity, 15 (1998), 2733-2742.
doi: 10.1088/0264-9381/15/9/019.![]() ![]() ![]() |
[24] |
S. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.
![]() |
[25] |
J. Van Schaftingen and J. Xia, Choquard equations under confining external potentials, Nonlinear Differ. Equ. Appl., 24 (2017), 24pp.
doi: 10.1007/s00030-016-0424-8.![]() ![]() ![]() |
[26] |
J. Wei and M. Winter, Strongly interacting bumps for the Schrödinger-Newton equations, J. Math. Phys., 50 (2009), 012905, 22 pp.
doi: 10.1063/1.3060169.![]() ![]() ![]() |
[27] |
T. Wang and T. Yi, Uniqueness of positive solutions of the Choquard type equations, Appl. Anal., 96 (2017), 409-417.
doi: 10.1080/00036811.2016.1138473.![]() ![]() ![]() |
[28] |
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[29] |
C. Xiang, Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions, Calc. Var. Partial Differ. Equ., 55 (2016), 25pp.
doi: 10.1007/s00526-016-1068-6.![]() ![]() ![]() |
[30] |
J. Xia and Z. Wang, Saddle solutions for the Choquard equation, Calc. Var. Partial Differ. Equ., 58 (2019), 30pp.
doi: 10.1007/s00526-019-1546-8.![]() ![]() ![]() |