Advanced Search
Article Contents
Article Contents

Fractional oscillon equations; solvability and connection with classical oscillon equations

  • * Corresponding author

    * Corresponding author
The second author is supported by CAPES/Finance Code 001/2019, Brazil. The third author is partially supported by FAPESP grant # 2017/06582-2, Brazil
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • In this paper we are concerned with the asymptotic behavior of nonautonomous fractional approximations of oscillon equation

    $ u_{tt}-\mu(t)\Delta u+\omega(t)u_t = f(u),\ x\in\Omega,\ t\in{\mathbb{R}}, $

    subject to Dirichlet boundary condition on $ \partial \Omega $, where $ \Omega $ is a bounded smooth domain in $ {\mathbb{R}}^N $, $ N\geq 3 $, the function $ \omega $ is a time-dependent damping, $ \mu $ is a time-dependent squared speed of propagation, and $ f $ is a nonlinear functional. Under structural assumptions on $ \omega $ and $ \mu $ we establish the existence of time-dependent attractor for the fractional models in the sense of Carvalho, Langa, Robinson [6], and Di Plinio, Duane, Temam [10].

    Mathematics Subject Classification: Primary: 37B55, 35B40, 35B41; Secondary: 34A08, 35L71.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Partial description of the fractional power spaces scale for $ \varLambda(t) , t\in{\mathbb{R}} $.

  • [1] H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.
    [2] F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.
    [3] T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.
    [4] A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc., 66 (2002), 443-463. doi: 10.1017/S0004972700040296.
    [5] A. N. Carvalho and J. W. Cholewa, Strongly damped wave equations in $W^{1,p}_0(\Omega) \times L^{p}(\Omega)$, Discrete Contin. Dyn. Syst., 2007 (2007), 230-239. 
    [6] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4581-4.
    [7] A. N. Carvalho and M. J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.  doi: 10.3934/dcdss.2009.2.449.
    [8] S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems., Pacific J. Math., 136 (1989), 15-55. 
    [9] M. ContiV. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.
    [10] F. Di PlinioG. S. Duane and R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.
    [11] F. Di PlinioG. S. Duane and R. Temam, The 3-dimensional oscillon equation, Boll. Unione Mat. Ital., 5 (2012), 19-53. 
    [12] J. K. Hale, Asymptotic Behavior of Dissipative System, American Mathematical Society, 1989. doi: 10.1090/surv/025.
    [13] T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96. 
    [14] M. J. D. Nascimento and F. D. M. Bezerra, Non-autonomous approximations governed by the fractional powers of damped wave operators, Electron. J. Differ. Equ., 2019 (2019), 1-19. 
    [15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.
    [16] P. E. Sobolevskiĭ, Equations of parabolic type in a Banach space, Amer. Math. Soc. Trans., 49 (1966), 1-62. 
  • 加载中



Article Metrics

HTML views(1496) PDF downloads(145) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint