
-
Previous Article
Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body
- CPAA Home
- This Issue
-
Next Article
On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence
Fractional oscillon equations; solvability and connection with classical oscillon equations
1. | Universidade Federal da Paraíba, Departamento de Matemática, 58051-900 João Pessoa PB, Brazil |
2. | Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos SP, Brazil |
$ u_{tt}-\mu(t)\Delta u+\omega(t)u_t = f(u),\ x\in\Omega,\ t\in{\mathbb{R}}, $ |
$ \partial \Omega $ |
$ \Omega $ |
$ {\mathbb{R}}^N $ |
$ N\geq 3 $ |
$ \omega $ |
$ \mu $ |
$ f $ |
$ \omega $ |
$ \mu $ |
References:
[1] |
H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[2] |
F. D. M. Bezerra, A. N. Carvalho, J. W. Cholewa and M. J. D. Nascimento,
Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.
doi: 10.1016/j.jmaa.2017.01.024. |
[3] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero,
A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.
doi: 10.1016/j.na.2010.11.032. |
[4] |
A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc., 66 (2002), 443-463.
doi: 10.1017/S0004972700040296. |
[5] |
A. N. Carvalho and J. W. Cholewa,
Strongly damped wave equations in $W^{1,p}_0(\Omega) \times L^{p}(\Omega)$, Discrete Contin. Dyn. Syst., 2007 (2007), 230-239.
|
[6] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-4581-4. |
[7] |
A. N. Carvalho and M. J. D. Nascimento,
Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.
doi: 10.3934/dcdss.2009.2.449. |
[8] |
S. Chen and R. Triggiani,
Proof of extension of two conjectures on structural damping for elastic systems., Pacific J. Math., 136 (1989), 15-55.
|
[9] |
M. Conti, V. Pata and R. Temam,
Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254-1277.
doi: 10.1016/j.jde.2013.05.013. |
[10] |
F. Di Plinio, G. S. Duane and R. Temam,
Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.
doi: 10.3934/dcds.2011.29.141. |
[11] |
F. Di Plinio, G. S. Duane and R. Temam,
The 3-dimensional oscillon equation, Boll. Unione Mat. Ital., 5 (2012), 19-53.
|
[12] |
J. K. Hale, Asymptotic Behavior of Dissipative System, American Mathematical Society, 1989.
doi: 10.1090/surv/025. |
[13] |
T. Kato,
Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.
|
[14] |
M. J. D. Nascimento and F. D. M. Bezerra,
Non-autonomous approximations governed by the fractional powers of damped wave operators, Electron. J. Differ. Equ., 2019 (2019), 1-19.
|
[15] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[16] |
P. E. Sobolevskiĭ,
Equations of parabolic type in a Banach space, Amer. Math. Soc. Trans., 49 (1966), 1-62.
|
show all references
References:
[1] |
H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser Verlag, Basel, 1995.
doi: 10.1007/978-3-0348-9221-6. |
[2] |
F. D. M. Bezerra, A. N. Carvalho, J. W. Cholewa and M. J. D. Nascimento,
Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.
doi: 10.1016/j.jmaa.2017.01.024. |
[3] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero,
A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.
doi: 10.1016/j.na.2010.11.032. |
[4] |
A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc., 66 (2002), 443-463.
doi: 10.1017/S0004972700040296. |
[5] |
A. N. Carvalho and J. W. Cholewa,
Strongly damped wave equations in $W^{1,p}_0(\Omega) \times L^{p}(\Omega)$, Discrete Contin. Dyn. Syst., 2007 (2007), 230-239.
|
[6] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2012.
doi: 10.1007/978-1-4614-4581-4. |
[7] |
A. N. Carvalho and M. J. D. Nascimento,
Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.
doi: 10.3934/dcdss.2009.2.449. |
[8] |
S. Chen and R. Triggiani,
Proof of extension of two conjectures on structural damping for elastic systems., Pacific J. Math., 136 (1989), 15-55.
|
[9] |
M. Conti, V. Pata and R. Temam,
Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254-1277.
doi: 10.1016/j.jde.2013.05.013. |
[10] |
F. Di Plinio, G. S. Duane and R. Temam,
Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.
doi: 10.3934/dcds.2011.29.141. |
[11] |
F. Di Plinio, G. S. Duane and R. Temam,
The 3-dimensional oscillon equation, Boll. Unione Mat. Ital., 5 (2012), 19-53.
|
[12] |
J. K. Hale, Asymptotic Behavior of Dissipative System, American Mathematical Society, 1989.
doi: 10.1090/surv/025. |
[13] |
T. Kato,
Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.
|
[14] |
M. J. D. Nascimento and F. D. M. Bezerra,
Non-autonomous approximations governed by the fractional powers of damped wave operators, Electron. J. Differ. Equ., 2019 (2019), 1-19.
|
[15] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[16] |
P. E. Sobolevskiĭ,
Equations of parabolic type in a Banach space, Amer. Math. Soc. Trans., 49 (1966), 1-62.
|

[1] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[2] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[3] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[4] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043 |
[5] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[6] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[7] |
Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227 |
[10] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[11] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[12] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[13] |
Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008 |
[14] |
Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021093 |
[15] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[16] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[17] |
Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028 |
[18] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[19] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[20] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
2019 Impact Factor: 1.105
Tools
Article outline
Figures and Tables
[Back to Top]