doi: 10.3934/cpaa.2021067

Fractional oscillon equations; solvability and connection with classical oscillon equations

1. 

Universidade Federal da Paraíba, Departamento de Matemática, 58051-900 João Pessoa PB, Brazil

2. 

Departamento de Matemática, Universidade Federal de São Carlos, 13565-905 São Carlos SP, Brazil

* Corresponding author

Received  March 2020 Revised  March 2021 Published  April 2021

Fund Project: The second author is supported by CAPES/Finance Code 001/2019, Brazil. The third author is partially supported by FAPESP grant # 2017/06582-2, Brazil

In this paper we are concerned with the asymptotic behavior of nonautonomous fractional approximations of oscillon equation
$ u_{tt}-\mu(t)\Delta u+\omega(t)u_t = f(u),\ x\in\Omega,\ t\in{\mathbb{R}}, $
subject to Dirichlet boundary condition on
$ \partial \Omega $
, where
$ \Omega $
is a bounded smooth domain in
$ {\mathbb{R}}^N $
,
$ N\geq 3 $
, the function
$ \omega $
is a time-dependent damping,
$ \mu $
is a time-dependent squared speed of propagation, and
$ f $
is a nonlinear functional. Under structural assumptions on
$ \omega $
and
$ \mu $
we establish the existence of time-dependent attractor for the fractional models in the sense of Carvalho, Langa, Robinson [6], and Di Plinio, Duane, Temam [10].
Citation: Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021067
References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[3]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[4]

A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc., 66 (2002), 443-463. doi: 10.1017/S0004972700040296.  Google Scholar

[5]

A. N. Carvalho and J. W. Cholewa, Strongly damped wave equations in $W^{1,p}_0(\Omega) \times L^{p}(\Omega)$, Discrete Contin. Dyn. Syst., 2007 (2007), 230-239.   Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

A. N. Carvalho and M. J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.  doi: 10.3934/dcdss.2009.2.449.  Google Scholar

[8]

S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems., Pacific J. Math., 136 (1989), 15-55.   Google Scholar

[9]

M. ContiV. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.  Google Scholar

[10]

F. Di PlinioG. S. Duane and R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.  Google Scholar

[11]

F. Di PlinioG. S. Duane and R. Temam, The 3-dimensional oscillon equation, Boll. Unione Mat. Ital., 5 (2012), 19-53.   Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative System, American Mathematical Society, 1989. doi: 10.1090/surv/025.  Google Scholar

[13]

T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.   Google Scholar

[14]

M. J. D. Nascimento and F. D. M. Bezerra, Non-autonomous approximations governed by the fractional powers of damped wave operators, Electron. J. Differ. Equ., 2019 (2019), 1-19.   Google Scholar

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[16]

P. E. Sobolevskiĭ, Equations of parabolic type in a Banach space, Amer. Math. Soc. Trans., 49 (1966), 1-62.   Google Scholar

show all references

References:
[1]

H. Amann, Linear and Quasilinear Parabolic Problems, Volume I: Abstract Linear Theory, Birkhäuser Verlag, Basel, 1995. doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

F. D. M. BezerraA. N. CarvalhoJ. W. Cholewa and M. J. D. Nascimento, Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics, J. Math. Anal. Appl., 450 (2017), 377-405.  doi: 10.1016/j.jmaa.2017.01.024.  Google Scholar

[3]

T. CaraballoA. N. CarvalhoJ. A. Langa and F. Rivero, A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor, Nonlinear Anal., 74 (2011), 2272-2283.  doi: 10.1016/j.na.2010.11.032.  Google Scholar

[4]

A. N. Carvalho and J. W. Cholewa, Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Aust. Math. Soc., 66 (2002), 443-463. doi: 10.1017/S0004972700040296.  Google Scholar

[5]

A. N. Carvalho and J. W. Cholewa, Strongly damped wave equations in $W^{1,p}_0(\Omega) \times L^{p}(\Omega)$, Discrete Contin. Dyn. Syst., 2007 (2007), 230-239.   Google Scholar

[6]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences 182, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

A. N. Carvalho and M. J. D. Nascimento, Singularly non-autonomous semilinear parabolic problems with critical exponents and applications, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 449-471.  doi: 10.3934/dcdss.2009.2.449.  Google Scholar

[8]

S. Chen and R. Triggiani, Proof of extension of two conjectures on structural damping for elastic systems., Pacific J. Math., 136 (1989), 15-55.   Google Scholar

[9]

M. ContiV. Pata and R. Temam, Attractors for processes on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254-1277.  doi: 10.1016/j.jde.2013.05.013.  Google Scholar

[10]

F. Di PlinioG. S. Duane and R. Temam, Time dependent attractor for the oscillon equation, Discrete Contin. Dyn. Syst., 29 (2011), 141-167.  doi: 10.3934/dcds.2011.29.141.  Google Scholar

[11]

F. Di PlinioG. S. Duane and R. Temam, The 3-dimensional oscillon equation, Boll. Unione Mat. Ital., 5 (2012), 19-53.   Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative System, American Mathematical Society, 1989. doi: 10.1090/surv/025.  Google Scholar

[13]

T. Kato, Note on fractional powers of linear operators, Proc. Japan Acad., 36 (1960), 94-96.   Google Scholar

[14]

M. J. D. Nascimento and F. D. M. Bezerra, Non-autonomous approximations governed by the fractional powers of damped wave operators, Electron. J. Differ. Equ., 2019 (2019), 1-19.   Google Scholar

[15]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[16]

P. E. Sobolevskiĭ, Equations of parabolic type in a Banach space, Amer. Math. Soc. Trans., 49 (1966), 1-62.   Google Scholar

Figure 1.  Partial description of the fractional power spaces scale for $ \varLambda(t) , t\in{\mathbb{R}} $.
[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[3]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[4]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[6]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[7]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[10]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[11]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[12]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[13]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[14]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[15]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[16]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[17]

Lianbing She, Nan Liu, Xin Li, Renhai Wang. Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, , () : -. doi: 10.3934/era.2021028

[18]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[19]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[20]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]