doi: 10.3934/cpaa.2021069

Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics

1. 

Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil

2. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

3. 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

4. 

Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487-0350, USA

* Corresponding author

Received  August 2020 Revised  February 2021 Published  April 2021

Fund Project: The first author is supported by a Discovery grant administered by Vanderbilt University The second author is supported by a Sloan Research Fellowship, NSF grant # 1812826, a Dean's Faculty Fellowship and a Discovery grant administered by Vanderbilt University. The third author is supported by NSF Postdoctoral Research Fellowship DMS-1703180

In this manuscript, we study the theory of conformal relativistic viscous hydrodynamics introduced in [4], which provided a causal and stable first-order theory of relativistic fluids with viscosity. Local existence and uniqueness of solutions to its equations of motion have been previously established in Gevrey spaces. Here, we improve this result by proving local existence and uniqueness of solutions in Sobolev spaces.

Citation: Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021069
References:
[1]

M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla and K. Schwenzer, Viscous dissipation and heat conduction in binary neutron-star mergers, Phys. Rev. Lett., 120 (2018), 041101. Google Scholar

[2]

A. M. Anile, Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics (cambridge monographs on mathematical physics), Cambridge University Press; 1$^st$ edition, 1990. Google Scholar

[3]

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP, 04 (2008), 100. doi: 10.1088/1126-6708/2008/04/100.  Google Scholar

[4]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Phys. Rev. D 98 (2018), 104064. doi: 10.1103/physrevd. 98.104064.  Google Scholar

[5]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality of the Einstein-Israel-Stewart theory with bulk viscosity, Phys. Rev. Lett., 122 (2019), 221602. Google Scholar

[6]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Nonlinear causality of general first-order relativistic viscous hydrodynamics, Physical Review D, 100 (2019), 104020. doi: 10.1103/physrevd. 100.104020.  Google Scholar

[7]

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP, 02 (2008), 045. Google Scholar

[8]

U. Brauer and L. Karp, Well-posedness of the Einstein-Euler system in asymptotically flat space-times: the constraint equations, J. Differ. Equ., 251 (2011), 1428-1446.  doi: 10.1016/j.jde.2011.05.037.  Google Scholar

[9]

U. Brauer and L. Karp, Local existence of solutions of self gravitating relativistic perfect fluids, Commun. Math. Phys., 325 (2014), 105-141.  doi: 10.1007/s00220-013-1854-3.  Google Scholar

[10] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press, New York, 2009.   Google Scholar
[11]

D. Christodoulou, The Formation of Shocks in 3-dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/031.  Google Scholar

[12]

D. Christodoulou, The Shock Development Problem, EMS Monographs in Mathematics, European Mathematical Society (EMS), 2019. doi: 10.4171/192.  Google Scholar

[13]

M. Czubak and M. M. Disconzi, On the well-posedness of relativistic viscous fluids with non-zero vorticity, J. Math. Phys., 57 (2016), 042501. doi: 10.1063/1.4944910.  Google Scholar

[14]

M. M. Disconzi, On the well-posedness of relativistic viscous fluids, Nonlinearity, 27 (2014), 1915-1935.  doi: 10.1088/0951-7715/27/8/1915.  Google Scholar

[15]

M. M. Disconzi, Remarks on the Einstein-Euler-entropy system, Rev. Math. Phys., 27 (2015), 1550014. doi: 10.1142/S0129055X15500142.  Google Scholar

[16]

M. M. Disconzi, On the existence of solutions and causality for relativistic viscous conformal fluids, Commun. Pure Appl. Anal., 18 (2019), 1567-1599.  doi: 10.3934/cpaa.2019075.  Google Scholar

[17]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, A new approach to cosmological bulk viscosity, Phys. Rev. D, 91 (2015), 043532. doi: 10.1103/PhysRevD. 91.043532.  Google Scholar

[18]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, On a viable first order formulation of relativistic viscous fluids and its applications to cosmology, International Journal of Modern Physics. D. Gravitation, Astrophysics, Cosmology, 26 (2017), 1750146. doi: 10.1142/S0218271817501462.  Google Scholar

[19]

Y. Fourès-Bruhat, Théorèmes d'existence en mécanique des fluides relativistes, Bull. Soc. Math. France, 86 (1958), 155-175.   Google Scholar

[20]

G. Fournodavlos and V. Schlue, On "hard stars" in general relativity, Annales Henri Poincaré, 20 (2019), 2135-2172.  doi: 10.1007/s00023-019-00793-4.  Google Scholar

[21]

R. Geroch and L. Lindblom, Causal theories of dissipative relativistic fluids, Ann. Physics, 207 (1991), 394-416.  doi: 10.1016/0003-4916(91)90063-E.  Google Scholar

[22]

D. Ginsberg, A priori estimates for a relativistic liquid with free surface boundary, J. Hyperbolic Differ. Equ., 16 (2019), 401-442.  doi: 10.1142/S0219891619500152.  Google Scholar

[23]

M. HadžićS. Shkoller and J. Speck, A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary, Commun. Partial Differ. Equ., 44 (2019), 859-906.  doi: 10.1080/03605302.2019.1583250.  Google Scholar

[24]

U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci., 63 (2013), 123-151.   Google Scholar

[25]

W. A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Ann. Phys., 151 (1983), 466-496.  doi: 10.1016/0003-4916(83)90288-9.  Google Scholar

[26]

W. A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative fluid theories, Phys. Rev. D, 31 (1985), 725-733.  doi: 10.1103/PhysRevD.31.725.  Google Scholar

[27]

J. JangP. G. LeFloch and N. Masmoudi, Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum, J. Differ. Equ., 260 (2016), 5481-5509.  doi: 10.1016/j.jde.2015.12.004.  Google Scholar

[28]

L. Lehner, O. A. Reula and M. E. Rubio, Hyperbolic theory of relativistic conformal dissipative fluids, Phys. Rev. D, 97 (2018), 024013. doi: 10.1103/physrevd. 97.024013.  Google Scholar

[29]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183.  Google Scholar

[30]

T. A. Oliynyk, Dynamical relativistic liquid bodies I: constraint propagation, preprint, arXiv: 1707.08219. Google Scholar

[31]

T. A. Oliynyk, A priori estimates for relativistic liquid bodies, Bull. Sci. Math., 141 (2017), 105-222.  doi: 10.1016/j.bulsci.2017.02.001.  Google Scholar

[32]

T. A. Oliynyk, Dynamical relativistic liquid bodies, preprint, arXiv: 1907.08192. Google Scholar

[33] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford University Press, New York, 2013.   Google Scholar
[34]

L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, 1993. doi: 10.1142/9789814360036.  Google Scholar

[35]

M. Strickland, Anisotropic hydrodynamics: Motivation and methodology, Nucl. Phys. A, 926 (2014), 92-101.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[36]

M. Strickland, Anisotropic hydrodynamics: Three lectures, Acta Phys. Polon. B, 45 (2014), 2355-2394.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[37]

M. E. Taylor, Partial Differential Equations III: Nonlinear Equation, Spring, New York, 2010. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[38] S. Weinberg, Cosmology, Oxford University Press, 2008.   Google Scholar

show all references

References:
[1]

M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla and K. Schwenzer, Viscous dissipation and heat conduction in binary neutron-star mergers, Phys. Rev. Lett., 120 (2018), 041101. Google Scholar

[2]

A. M. Anile, Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics (cambridge monographs on mathematical physics), Cambridge University Press; 1$^st$ edition, 1990. Google Scholar

[3]

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP, 04 (2008), 100. doi: 10.1088/1126-6708/2008/04/100.  Google Scholar

[4]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Phys. Rev. D 98 (2018), 104064. doi: 10.1103/physrevd. 98.104064.  Google Scholar

[5]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality of the Einstein-Israel-Stewart theory with bulk viscosity, Phys. Rev. Lett., 122 (2019), 221602. Google Scholar

[6]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Nonlinear causality of general first-order relativistic viscous hydrodynamics, Physical Review D, 100 (2019), 104020. doi: 10.1103/physrevd. 100.104020.  Google Scholar

[7]

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP, 02 (2008), 045. Google Scholar

[8]

U. Brauer and L. Karp, Well-posedness of the Einstein-Euler system in asymptotically flat space-times: the constraint equations, J. Differ. Equ., 251 (2011), 1428-1446.  doi: 10.1016/j.jde.2011.05.037.  Google Scholar

[9]

U. Brauer and L. Karp, Local existence of solutions of self gravitating relativistic perfect fluids, Commun. Math. Phys., 325 (2014), 105-141.  doi: 10.1007/s00220-013-1854-3.  Google Scholar

[10] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press, New York, 2009.   Google Scholar
[11]

D. Christodoulou, The Formation of Shocks in 3-dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/031.  Google Scholar

[12]

D. Christodoulou, The Shock Development Problem, EMS Monographs in Mathematics, European Mathematical Society (EMS), 2019. doi: 10.4171/192.  Google Scholar

[13]

M. Czubak and M. M. Disconzi, On the well-posedness of relativistic viscous fluids with non-zero vorticity, J. Math. Phys., 57 (2016), 042501. doi: 10.1063/1.4944910.  Google Scholar

[14]

M. M. Disconzi, On the well-posedness of relativistic viscous fluids, Nonlinearity, 27 (2014), 1915-1935.  doi: 10.1088/0951-7715/27/8/1915.  Google Scholar

[15]

M. M. Disconzi, Remarks on the Einstein-Euler-entropy system, Rev. Math. Phys., 27 (2015), 1550014. doi: 10.1142/S0129055X15500142.  Google Scholar

[16]

M. M. Disconzi, On the existence of solutions and causality for relativistic viscous conformal fluids, Commun. Pure Appl. Anal., 18 (2019), 1567-1599.  doi: 10.3934/cpaa.2019075.  Google Scholar

[17]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, A new approach to cosmological bulk viscosity, Phys. Rev. D, 91 (2015), 043532. doi: 10.1103/PhysRevD. 91.043532.  Google Scholar

[18]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, On a viable first order formulation of relativistic viscous fluids and its applications to cosmology, International Journal of Modern Physics. D. Gravitation, Astrophysics, Cosmology, 26 (2017), 1750146. doi: 10.1142/S0218271817501462.  Google Scholar

[19]

Y. Fourès-Bruhat, Théorèmes d'existence en mécanique des fluides relativistes, Bull. Soc. Math. France, 86 (1958), 155-175.   Google Scholar

[20]

G. Fournodavlos and V. Schlue, On "hard stars" in general relativity, Annales Henri Poincaré, 20 (2019), 2135-2172.  doi: 10.1007/s00023-019-00793-4.  Google Scholar

[21]

R. Geroch and L. Lindblom, Causal theories of dissipative relativistic fluids, Ann. Physics, 207 (1991), 394-416.  doi: 10.1016/0003-4916(91)90063-E.  Google Scholar

[22]

D. Ginsberg, A priori estimates for a relativistic liquid with free surface boundary, J. Hyperbolic Differ. Equ., 16 (2019), 401-442.  doi: 10.1142/S0219891619500152.  Google Scholar

[23]

M. HadžićS. Shkoller and J. Speck, A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary, Commun. Partial Differ. Equ., 44 (2019), 859-906.  doi: 10.1080/03605302.2019.1583250.  Google Scholar

[24]

U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci., 63 (2013), 123-151.   Google Scholar

[25]

W. A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Ann. Phys., 151 (1983), 466-496.  doi: 10.1016/0003-4916(83)90288-9.  Google Scholar

[26]

W. A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative fluid theories, Phys. Rev. D, 31 (1985), 725-733.  doi: 10.1103/PhysRevD.31.725.  Google Scholar

[27]

J. JangP. G. LeFloch and N. Masmoudi, Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum, J. Differ. Equ., 260 (2016), 5481-5509.  doi: 10.1016/j.jde.2015.12.004.  Google Scholar

[28]

L. Lehner, O. A. Reula and M. E. Rubio, Hyperbolic theory of relativistic conformal dissipative fluids, Phys. Rev. D, 97 (2018), 024013. doi: 10.1103/physrevd. 97.024013.  Google Scholar

[29]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183.  Google Scholar

[30]

T. A. Oliynyk, Dynamical relativistic liquid bodies I: constraint propagation, preprint, arXiv: 1707.08219. Google Scholar

[31]

T. A. Oliynyk, A priori estimates for relativistic liquid bodies, Bull. Sci. Math., 141 (2017), 105-222.  doi: 10.1016/j.bulsci.2017.02.001.  Google Scholar

[32]

T. A. Oliynyk, Dynamical relativistic liquid bodies, preprint, arXiv: 1907.08192. Google Scholar

[33] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford University Press, New York, 2013.   Google Scholar
[34]

L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, 1993. doi: 10.1142/9789814360036.  Google Scholar

[35]

M. Strickland, Anisotropic hydrodynamics: Motivation and methodology, Nucl. Phys. A, 926 (2014), 92-101.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[36]

M. Strickland, Anisotropic hydrodynamics: Three lectures, Acta Phys. Polon. B, 45 (2014), 2355-2394.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[37]

M. E. Taylor, Partial Differential Equations III: Nonlinear Equation, Spring, New York, 2010. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[38] S. Weinberg, Cosmology, Oxford University Press, 2008.   Google Scholar
[1]

Marcelo M. Disconzi. On the existence of solutions and causality for relativistic viscous conformal fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1567-1599. doi: 10.3934/cpaa.2019075

[2]

Allen Montz, Hamid Bellout, Frederick Bloom. Existence and uniqueness of steady flows of nonlinear bipolar viscous fluids in a cylinder. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2107-2128. doi: 10.3934/dcdsb.2015.20.2107

[3]

Juan Calvo. On the hyperbolicity and causality of the relativistic Euler system under the kinetic equation of state. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1341-1347. doi: 10.3934/cpaa.2013.12.1341

[4]

Antonio Greco, Vincenzino Mascia. Non-local sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 503-519. doi: 10.3934/dcds.2019021

[5]

Krerley Oliveira, Marcelo Viana. Existence and uniqueness of maximizing measures for robust classes of local diffeomorphisms. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 225-236. doi: 10.3934/dcds.2006.15.225

[6]

Marta Strani. Existence and uniqueness of a positive connection for the scalar viscous shallow water system in a bounded interval. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1653-1667. doi: 10.3934/cpaa.2014.13.1653

[7]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[8]

Eduard Feireisl. Mathematical theory of viscous fluids: Retrospective and future perspectives. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 533-555. doi: 10.3934/dcds.2010.27.533

[9]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure & Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

[10]

Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for non-conformal repellers. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5763-5780. doi: 10.3934/dcds.2017250

[11]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[12]

Diego Rapoport. Random representations of viscous fluids and the passive magnetic fields transported on them. Conference Publications, 2001, 2001 (Special) : 327-336. doi: 10.3934/proc.2001.2001.327

[13]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations & Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[14]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[15]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[16]

Martin Bauer, Thomas Fidler, Markus Grasmair. Local uniqueness of the circular integral invariant. Inverse Problems & Imaging, 2013, 7 (1) : 107-122. doi: 10.3934/ipi.2013.7.107

[17]

Zhi-Ying Sun, Lan Huang, Xin-Guang Yang. Exponential stability and regularity of compressible viscous micropolar fluid with cylinder symmetry. Electronic Research Archive, 2020, 28 (2) : 861-878. doi: 10.3934/era.2020045

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147

[20]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (21)
  • HTML views (33)
  • Cited by (0)

[Back to Top]