doi: 10.3934/cpaa.2021069

Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics

1. 

Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil

2. 

Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA

3. 

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

4. 

Department of Mathematics, The University of Alabama, Tuscaloosa, AL 35487-0350, USA

* Corresponding author

Received  August 2020 Revised  February 2021 Published  April 2021

Fund Project: The first author is supported by a Discovery grant administered by Vanderbilt University The second author is supported by a Sloan Research Fellowship, NSF grant # 1812826, a Dean's Faculty Fellowship and a Discovery grant administered by Vanderbilt University. The third author is supported by NSF Postdoctoral Research Fellowship DMS-1703180

In this manuscript, we study the theory of conformal relativistic viscous hydrodynamics introduced in [4], which provided a causal and stable first-order theory of relativistic fluids with viscosity. Local existence and uniqueness of solutions to its equations of motion have been previously established in Gevrey spaces. Here, we improve this result by proving local existence and uniqueness of solutions in Sobolev spaces.

Citation: Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021069
References:
[1]

M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla and K. Schwenzer, Viscous dissipation and heat conduction in binary neutron-star mergers, Phys. Rev. Lett., 120 (2018), 041101. Google Scholar

[2]

A. M. Anile, Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics (cambridge monographs on mathematical physics), Cambridge University Press; 1$^st$ edition, 1990. Google Scholar

[3]

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP, 04 (2008), 100. doi: 10.1088/1126-6708/2008/04/100.  Google Scholar

[4]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Phys. Rev. D 98 (2018), 104064. doi: 10.1103/physrevd. 98.104064.  Google Scholar

[5]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality of the Einstein-Israel-Stewart theory with bulk viscosity, Phys. Rev. Lett., 122 (2019), 221602. Google Scholar

[6]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Nonlinear causality of general first-order relativistic viscous hydrodynamics, Physical Review D, 100 (2019), 104020. doi: 10.1103/physrevd. 100.104020.  Google Scholar

[7]

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP, 02 (2008), 045. Google Scholar

[8]

U. Brauer and L. Karp, Well-posedness of the Einstein-Euler system in asymptotically flat space-times: the constraint equations, J. Differ. Equ., 251 (2011), 1428-1446.  doi: 10.1016/j.jde.2011.05.037.  Google Scholar

[9]

U. Brauer and L. Karp, Local existence of solutions of self gravitating relativistic perfect fluids, Commun. Math. Phys., 325 (2014), 105-141.  doi: 10.1007/s00220-013-1854-3.  Google Scholar

[10] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press, New York, 2009.   Google Scholar
[11]

D. Christodoulou, The Formation of Shocks in 3-dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/031.  Google Scholar

[12]

D. Christodoulou, The Shock Development Problem, EMS Monographs in Mathematics, European Mathematical Society (EMS), 2019. doi: 10.4171/192.  Google Scholar

[13]

M. Czubak and M. M. Disconzi, On the well-posedness of relativistic viscous fluids with non-zero vorticity, J. Math. Phys., 57 (2016), 042501. doi: 10.1063/1.4944910.  Google Scholar

[14]

M. M. Disconzi, On the well-posedness of relativistic viscous fluids, Nonlinearity, 27 (2014), 1915-1935.  doi: 10.1088/0951-7715/27/8/1915.  Google Scholar

[15]

M. M. Disconzi, Remarks on the Einstein-Euler-entropy system, Rev. Math. Phys., 27 (2015), 1550014. doi: 10.1142/S0129055X15500142.  Google Scholar

[16]

M. M. Disconzi, On the existence of solutions and causality for relativistic viscous conformal fluids, Commun. Pure Appl. Anal., 18 (2019), 1567-1599.  doi: 10.3934/cpaa.2019075.  Google Scholar

[17]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, A new approach to cosmological bulk viscosity, Phys. Rev. D, 91 (2015), 043532. doi: 10.1103/PhysRevD. 91.043532.  Google Scholar

[18]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, On a viable first order formulation of relativistic viscous fluids and its applications to cosmology, International Journal of Modern Physics. D. Gravitation, Astrophysics, Cosmology, 26 (2017), 1750146. doi: 10.1142/S0218271817501462.  Google Scholar

[19]

Y. Fourès-Bruhat, Théorèmes d'existence en mécanique des fluides relativistes, Bull. Soc. Math. France, 86 (1958), 155-175.   Google Scholar

[20]

G. Fournodavlos and V. Schlue, On "hard stars" in general relativity, Annales Henri Poincaré, 20 (2019), 2135-2172.  doi: 10.1007/s00023-019-00793-4.  Google Scholar

[21]

R. Geroch and L. Lindblom, Causal theories of dissipative relativistic fluids, Ann. Physics, 207 (1991), 394-416.  doi: 10.1016/0003-4916(91)90063-E.  Google Scholar

[22]

D. Ginsberg, A priori estimates for a relativistic liquid with free surface boundary, J. Hyperbolic Differ. Equ., 16 (2019), 401-442.  doi: 10.1142/S0219891619500152.  Google Scholar

[23]

M. HadžićS. Shkoller and J. Speck, A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary, Commun. Partial Differ. Equ., 44 (2019), 859-906.  doi: 10.1080/03605302.2019.1583250.  Google Scholar

[24]

U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci., 63 (2013), 123-151.   Google Scholar

[25]

W. A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Ann. Phys., 151 (1983), 466-496.  doi: 10.1016/0003-4916(83)90288-9.  Google Scholar

[26]

W. A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative fluid theories, Phys. Rev. D, 31 (1985), 725-733.  doi: 10.1103/PhysRevD.31.725.  Google Scholar

[27]

J. JangP. G. LeFloch and N. Masmoudi, Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum, J. Differ. Equ., 260 (2016), 5481-5509.  doi: 10.1016/j.jde.2015.12.004.  Google Scholar

[28]

L. Lehner, O. A. Reula and M. E. Rubio, Hyperbolic theory of relativistic conformal dissipative fluids, Phys. Rev. D, 97 (2018), 024013. doi: 10.1103/physrevd. 97.024013.  Google Scholar

[29]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183.  Google Scholar

[30]

T. A. Oliynyk, Dynamical relativistic liquid bodies I: constraint propagation, preprint, arXiv: 1707.08219. Google Scholar

[31]

T. A. Oliynyk, A priori estimates for relativistic liquid bodies, Bull. Sci. Math., 141 (2017), 105-222.  doi: 10.1016/j.bulsci.2017.02.001.  Google Scholar

[32]

T. A. Oliynyk, Dynamical relativistic liquid bodies, preprint, arXiv: 1907.08192. Google Scholar

[33] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford University Press, New York, 2013.   Google Scholar
[34]

L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, 1993. doi: 10.1142/9789814360036.  Google Scholar

[35]

M. Strickland, Anisotropic hydrodynamics: Motivation and methodology, Nucl. Phys. A, 926 (2014), 92-101.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[36]

M. Strickland, Anisotropic hydrodynamics: Three lectures, Acta Phys. Polon. B, 45 (2014), 2355-2394.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[37]

M. E. Taylor, Partial Differential Equations III: Nonlinear Equation, Spring, New York, 2010. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[38] S. Weinberg, Cosmology, Oxford University Press, 2008.   Google Scholar

show all references

References:
[1]

M. G. Alford, L. Bovard, M. Hanauske, L. Rezzolla and K. Schwenzer, Viscous dissipation and heat conduction in binary neutron-star mergers, Phys. Rev. Lett., 120 (2018), 041101. Google Scholar

[2]

A. M. Anile, Relativistic Fluids and Magneto-fluids: With Applications in Astrophysics and Plasma Physics (cambridge monographs on mathematical physics), Cambridge University Press; 1$^st$ edition, 1990. Google Scholar

[3]

R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP, 04 (2008), 100. doi: 10.1088/1126-6708/2008/04/100.  Google Scholar

[4]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality and existence of solutions of relativistic viscous fluid dynamics with gravity, Phys. Rev. D 98 (2018), 104064. doi: 10.1103/physrevd. 98.104064.  Google Scholar

[5]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Causality of the Einstein-Israel-Stewart theory with bulk viscosity, Phys. Rev. Lett., 122 (2019), 221602. Google Scholar

[6]

F. S. Bemfica, M. M. Disconzi and J. Noronha, Nonlinear causality of general first-order relativistic viscous hydrodynamics, Physical Review D, 100 (2019), 104020. doi: 10.1103/physrevd. 100.104020.  Google Scholar

[7]

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP, 02 (2008), 045. Google Scholar

[8]

U. Brauer and L. Karp, Well-posedness of the Einstein-Euler system in asymptotically flat space-times: the constraint equations, J. Differ. Equ., 251 (2011), 1428-1446.  doi: 10.1016/j.jde.2011.05.037.  Google Scholar

[9]

U. Brauer and L. Karp, Local existence of solutions of self gravitating relativistic perfect fluids, Commun. Math. Phys., 325 (2014), 105-141.  doi: 10.1007/s00220-013-1854-3.  Google Scholar

[10] Y. Choquet-Bruhat, General Relativity and the Einstein Equations, Oxford University Press, New York, 2009.   Google Scholar
[11]

D. Christodoulou, The Formation of Shocks in 3-dimensional Fluids, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2007. doi: 10.4171/031.  Google Scholar

[12]

D. Christodoulou, The Shock Development Problem, EMS Monographs in Mathematics, European Mathematical Society (EMS), 2019. doi: 10.4171/192.  Google Scholar

[13]

M. Czubak and M. M. Disconzi, On the well-posedness of relativistic viscous fluids with non-zero vorticity, J. Math. Phys., 57 (2016), 042501. doi: 10.1063/1.4944910.  Google Scholar

[14]

M. M. Disconzi, On the well-posedness of relativistic viscous fluids, Nonlinearity, 27 (2014), 1915-1935.  doi: 10.1088/0951-7715/27/8/1915.  Google Scholar

[15]

M. M. Disconzi, Remarks on the Einstein-Euler-entropy system, Rev. Math. Phys., 27 (2015), 1550014. doi: 10.1142/S0129055X15500142.  Google Scholar

[16]

M. M. Disconzi, On the existence of solutions and causality for relativistic viscous conformal fluids, Commun. Pure Appl. Anal., 18 (2019), 1567-1599.  doi: 10.3934/cpaa.2019075.  Google Scholar

[17]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, A new approach to cosmological bulk viscosity, Phys. Rev. D, 91 (2015), 043532. doi: 10.1103/PhysRevD. 91.043532.  Google Scholar

[18]

M. M. Disconzi, T. W. Kephart and R. J. Scherrer, On a viable first order formulation of relativistic viscous fluids and its applications to cosmology, International Journal of Modern Physics. D. Gravitation, Astrophysics, Cosmology, 26 (2017), 1750146. doi: 10.1142/S0218271817501462.  Google Scholar

[19]

Y. Fourès-Bruhat, Théorèmes d'existence en mécanique des fluides relativistes, Bull. Soc. Math. France, 86 (1958), 155-175.   Google Scholar

[20]

G. Fournodavlos and V. Schlue, On "hard stars" in general relativity, Annales Henri Poincaré, 20 (2019), 2135-2172.  doi: 10.1007/s00023-019-00793-4.  Google Scholar

[21]

R. Geroch and L. Lindblom, Causal theories of dissipative relativistic fluids, Ann. Physics, 207 (1991), 394-416.  doi: 10.1016/0003-4916(91)90063-E.  Google Scholar

[22]

D. Ginsberg, A priori estimates for a relativistic liquid with free surface boundary, J. Hyperbolic Differ. Equ., 16 (2019), 401-442.  doi: 10.1142/S0219891619500152.  Google Scholar

[23]

M. HadžićS. Shkoller and J. Speck, A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary, Commun. Partial Differ. Equ., 44 (2019), 859-906.  doi: 10.1080/03605302.2019.1583250.  Google Scholar

[24]

U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci., 63 (2013), 123-151.   Google Scholar

[25]

W. A. Hiscock and L. Lindblom, Stability and causality in dissipative relativistic fluids, Ann. Phys., 151 (1983), 466-496.  doi: 10.1016/0003-4916(83)90288-9.  Google Scholar

[26]

W. A. Hiscock and L. Lindblom, Generic instabilities in first-order dissipative fluid theories, Phys. Rev. D, 31 (1985), 725-733.  doi: 10.1103/PhysRevD.31.725.  Google Scholar

[27]

J. JangP. G. LeFloch and N. Masmoudi, Lagrangian formulation and a priori estimates for relativistic fluid flows with vacuum, J. Differ. Equ., 260 (2016), 5481-5509.  doi: 10.1016/j.jde.2015.12.004.  Google Scholar

[28]

L. Lehner, O. A. Reula and M. E. Rubio, Hyperbolic theory of relativistic conformal dissipative fluids, Phys. Rev. D, 97 (2018), 024013. doi: 10.1103/physrevd. 97.024013.  Google Scholar

[29]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. III, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183.  Google Scholar

[30]

T. A. Oliynyk, Dynamical relativistic liquid bodies I: constraint propagation, preprint, arXiv: 1707.08219. Google Scholar

[31]

T. A. Oliynyk, A priori estimates for relativistic liquid bodies, Bull. Sci. Math., 141 (2017), 105-222.  doi: 10.1016/j.bulsci.2017.02.001.  Google Scholar

[32]

T. A. Oliynyk, Dynamical relativistic liquid bodies, preprint, arXiv: 1907.08192. Google Scholar

[33] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics, Oxford University Press, New York, 2013.   Google Scholar
[34]

L. Rodino, Linear Partial Differential Operators in Gevrey Spaces, World Scientific, Singapore, 1993. doi: 10.1142/9789814360036.  Google Scholar

[35]

M. Strickland, Anisotropic hydrodynamics: Motivation and methodology, Nucl. Phys. A, 926 (2014), 92-101.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[36]

M. Strickland, Anisotropic hydrodynamics: Three lectures, Acta Phys. Polon. B, 45 (2014), 2355-2394.  doi: 10.5506/APhysPolB.45.2355.  Google Scholar

[37]

M. E. Taylor, Partial Differential Equations III: Nonlinear Equation, Spring, New York, 2010. doi: 10.1007/978-1-4419-7049-7.  Google Scholar

[38] S. Weinberg, Cosmology, Oxford University Press, 2008.   Google Scholar
[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3615-3627. doi: 10.3934/dcds.2021009

[3]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[4]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[5]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[6]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[7]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[8]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[9]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[11]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[12]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[13]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[14]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[15]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[16]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[17]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[18]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[19]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 1.105

Article outline

[Back to Top]