doi: 10.3934/cpaa.2021070

A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles

School of Mathematics, Jilin University, Changchun 130012, Jilin, China

* Corresponding author

Received  December 2020 Revised  March 2021 Published  April 2021

Fund Project: Supported by grants from the National Natural Science Foundation of China (Nos. 11871133 and 11925105)

This paper concerns continuous subsonic-sonic potential flows in a two dimensional convergent nozzle, which is governed by a free boundary problem of a quasilinear degenerate elliptic equation. It is shown that for a given nozzle which is a perturbation of an straight one, and a given mass flux, there exists uniquely a continuous subsonic-sonic flow whose velocity vector is along the normal direction at the inlet and the sonic curve. Furthermore, the sonic curve of this flow is a free boundary, where the flow is singular in the sense that the speed is only $ C^{1/2} $ Hölder continuous and the acceleration blows up at the sonic state.

Citation: Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021070
References:
[1]

L. Bers, Existence and uniqueness of a subsonic flow past a given profile, Commun. Pure Appl. Math., 7 (1954), 441-504.  doi: 10.1002/cpa.3160070303.  Google Scholar

[2]

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1958.  Google Scholar

[3]

C. ChenL. L. DuC. J. Xie and Z. P. Xin, Two dimensional subsonic Euler flows past a wall or a symmetric body, Arch. Ration. Mech. Anal., 221 (2016), 559-602.  doi: 10.1007/s00205-016-0968-0.  Google Scholar

[4]

G. Q. ChenC. M. DafermosM. Slemrod and D. H. Wang, On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271 (2007), 635-647.  doi: 10.1007/s00220-007-0211-9.  Google Scholar

[5]

G. Q. ChenF. M. Huang and T. Y. Wang, Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.  doi: 10.1007/s00205-015-0905-7.  Google Scholar

[6]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, NY, 1948.  Google Scholar

[7]

G. C. Dong and B. Ou, Subsonic flows around a body in space, Commun. Partial Differ. Equ., 18 (1993), 355-379.  doi: 10.1080/03605309308820933.  Google Scholar

[8]

L. L. DuC. J. Xie and Z. P. Xin, Steady subsonic ideal flows through an infinitely long nozzle with large vorticity, Commun. Math. Phys., 328 (2014), 327-354.  doi: 10.1007/s00220-014-1951-y.  Google Scholar

[9]

L. L. DuZ. P. Xin and W. Yan, Subsonic flows in a multi-dimensional nozzle, Arch. Ration. Mech. Anal., 201 (2011), 965-1012.  doi: 10.1007/s00205-011-0406-2.  Google Scholar

[10]

R. Finn and D. Gilbarg, Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296.  doi: 10.1007/BF02404476.  Google Scholar

[11]

G. M. Lieberman, Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations, Trans. Amer. Math. Soc., 304 (1987), 343-353.  doi: 10.1090/S0002-9947-1987-0906819-0.  Google Scholar

[12]

Y. Y. Nie and C. P. Wang, Continuous subsonic-sonic flows in convergent nozzles with straight solid walls, Nonlinearity, 29 (2016), 86-130.  doi: 10.1088/0951-7715/29/1/86.  Google Scholar

[13]

Y. Y. Nie and C. P. Wang, Continuous subsonic-sonic flows in a convergent nozzle, Acta Math. Sin., 34 (2018), 749–772. doi: 10.1007/s10114-017-7341-6.  Google Scholar

[14]

C. P. Wang, Continuous subsonic-sonic flows in a general nozzle, J. Differ. Equ., 259 (2015), 2546-2575.  doi: 10.1016/j.jde.2015.03.036.  Google Scholar

[15]

C. P. Wang and Z. P. Xin, On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208 (2013), 911-975.  doi: 10.1007/s00205-012-0607-3.  Google Scholar

[16]

C. P. Wang and Z. P. Xin, Global smooth supersonic flows in infinite expanding nozzles, SIAM J. Math. Anal., 47 (2015), 3151-3211.  doi: 10.1137/140994289.  Google Scholar

[17]

C. P. Wang and Z. P. Xin, On sonic curves of smooth subsonic-sonic and transonic flows, SIAM J. Math. Anal., 48 (2016), 2414-2453.  doi: 10.1137/16M1056407.  Google Scholar

[18]

C. P. Wang and Z. P. Xin, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.  doi: 10.1007/s00205-018-01350-9.  Google Scholar

[19]

C. P. Wang and M. J. Zhou, A degenerate elliptic problem from subsonic-sonic flows in general nozzles, J. Differ. Equ., 267 (2019), 3778-3796.  doi: 10.1016/j.jde.2019.04.026.  Google Scholar

[20]

C. J. Xie and Z. P. Xin, Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana U. Math. J., 56 (2007), 2991-3023.  doi: 10.1512/iumj.2007.56.3108.  Google Scholar

[21]

C. J. Xie and Z. P. Xin, Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42 (2010), 751-784.  doi: 10.1137/09076667X.  Google Scholar

[22]

J. X. Yin and C. P. Wang, Evolutionary weighted $p$-Laplacian with boundary degeneracy, J. Differ. Equ., 237 (2007), 421-445.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

show all references

References:
[1]

L. Bers, Existence and uniqueness of a subsonic flow past a given profile, Commun. Pure Appl. Math., 7 (1954), 441-504.  doi: 10.1002/cpa.3160070303.  Google Scholar

[2]

L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, John Wiley & Sons, Inc., New York, Chapman & Hall, Ltd., London, 1958.  Google Scholar

[3]

C. ChenL. L. DuC. J. Xie and Z. P. Xin, Two dimensional subsonic Euler flows past a wall or a symmetric body, Arch. Ration. Mech. Anal., 221 (2016), 559-602.  doi: 10.1007/s00205-016-0968-0.  Google Scholar

[4]

G. Q. ChenC. M. DafermosM. Slemrod and D. H. Wang, On two-dimensional sonic-subsonic flow, Commun. Math. Phys., 271 (2007), 635-647.  doi: 10.1007/s00220-007-0211-9.  Google Scholar

[5]

G. Q. ChenF. M. Huang and T. Y. Wang, Subsonic-sonic limit of approximate solutions to multidimensional steady Euler equations, Arch. Ration. Mech. Anal., 219 (2016), 719-740.  doi: 10.1007/s00205-015-0905-7.  Google Scholar

[6]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, NY, 1948.  Google Scholar

[7]

G. C. Dong and B. Ou, Subsonic flows around a body in space, Commun. Partial Differ. Equ., 18 (1993), 355-379.  doi: 10.1080/03605309308820933.  Google Scholar

[8]

L. L. DuC. J. Xie and Z. P. Xin, Steady subsonic ideal flows through an infinitely long nozzle with large vorticity, Commun. Math. Phys., 328 (2014), 327-354.  doi: 10.1007/s00220-014-1951-y.  Google Scholar

[9]

L. L. DuZ. P. Xin and W. Yan, Subsonic flows in a multi-dimensional nozzle, Arch. Ration. Mech. Anal., 201 (2011), 965-1012.  doi: 10.1007/s00205-011-0406-2.  Google Scholar

[10]

R. Finn and D. Gilbarg, Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations, Acta Math., 98 (1957), 265-296.  doi: 10.1007/BF02404476.  Google Scholar

[11]

G. M. Lieberman, Local estimates for subsolutions and supersolutions of oblique derivative problems for general second order elliptic equations, Trans. Amer. Math. Soc., 304 (1987), 343-353.  doi: 10.1090/S0002-9947-1987-0906819-0.  Google Scholar

[12]

Y. Y. Nie and C. P. Wang, Continuous subsonic-sonic flows in convergent nozzles with straight solid walls, Nonlinearity, 29 (2016), 86-130.  doi: 10.1088/0951-7715/29/1/86.  Google Scholar

[13]

Y. Y. Nie and C. P. Wang, Continuous subsonic-sonic flows in a convergent nozzle, Acta Math. Sin., 34 (2018), 749–772. doi: 10.1007/s10114-017-7341-6.  Google Scholar

[14]

C. P. Wang, Continuous subsonic-sonic flows in a general nozzle, J. Differ. Equ., 259 (2015), 2546-2575.  doi: 10.1016/j.jde.2015.03.036.  Google Scholar

[15]

C. P. Wang and Z. P. Xin, On a degenerate free boundary problem and continuous subsonic-sonic flows in a convergent nozzle, Arch. Ration. Mech. Anal., 208 (2013), 911-975.  doi: 10.1007/s00205-012-0607-3.  Google Scholar

[16]

C. P. Wang and Z. P. Xin, Global smooth supersonic flows in infinite expanding nozzles, SIAM J. Math. Anal., 47 (2015), 3151-3211.  doi: 10.1137/140994289.  Google Scholar

[17]

C. P. Wang and Z. P. Xin, On sonic curves of smooth subsonic-sonic and transonic flows, SIAM J. Math. Anal., 48 (2016), 2414-2453.  doi: 10.1137/16M1056407.  Google Scholar

[18]

C. P. Wang and Z. P. Xin, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232 (2019), 1597-1647.  doi: 10.1007/s00205-018-01350-9.  Google Scholar

[19]

C. P. Wang and M. J. Zhou, A degenerate elliptic problem from subsonic-sonic flows in general nozzles, J. Differ. Equ., 267 (2019), 3778-3796.  doi: 10.1016/j.jde.2019.04.026.  Google Scholar

[20]

C. J. Xie and Z. P. Xin, Global subsonic and subsonic-sonic flows through infinitely long nozzles, Indiana U. Math. J., 56 (2007), 2991-3023.  doi: 10.1512/iumj.2007.56.3108.  Google Scholar

[21]

C. J. Xie and Z. P. Xin, Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42 (2010), 751-784.  doi: 10.1137/09076667X.  Google Scholar

[22]

J. X. Yin and C. P. Wang, Evolutionary weighted $p$-Laplacian with boundary degeneracy, J. Differ. Equ., 237 (2007), 421-445.  doi: 10.1016/j.jde.2007.03.012.  Google Scholar

[1]

Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021092

[2]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[5]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[6]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129

[7]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[8]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[9]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[10]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[11]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[12]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[13]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3709-3724. doi: 10.3934/dcds.2021013

[14]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[15]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[16]

Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256

[17]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[18]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[19]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[20]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

2019 Impact Factor: 1.105

Article outline

[Back to Top]