
-
Previous Article
Hadamard Semidifferential, Oriented Distance Function, and some Applications
- CPAA Home
- This Issue
-
Next Article
Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations
On the even solutions of the Toda system: A degree argument approach
1. | Department of Mathematics, University of Science and Technology of China, Hefei 230027, China |
2. | Department of Mathematics, Towson University, Towson, MD 21252, USA |
3. | School of Mathematical Sciences and Physics, North China Electric Power University, Beijing 102206, China |
In this paper, we show the existence of even solutions with prescribed asymptotic behavior at infinity. Instead of using the integrability of the Toda system, the novel idea here is a degree argument approach. Perturbation theory has also been used in our study. Our method can be generalized to explore non-integrable systems with exponential type nonlinearities.
References:
[1] |
M. A. Agrotis, P. A. Damianou and C. Sophocleous,
The Toda lattice is super-integrable, Phys. A, 365 (2006), 235-243.
doi: 10.1016/j.physa.2006.01.001. |
[2] |
M. Del Pino, M. Kowalczyk and F. Pacard,
Multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^{2}$, J. Funct. Anal., 258 (2010), 458-503.
doi: 10.1016/j.jfa.2009.04.020. |
[3] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei,
The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516.
doi: 10.1016/j.aim.2010.01.003. |
[4] |
M. Del Pino, M. Kowalczyk and and J. Wei,
The Jacobi-Toda system and foliated interfaces, Discrete Contin. Dyn. Syst, 28 (2010), 975-1006.
doi: 10.3934/dcds.2010.28.975. |
[5] |
F. Gesztesy, H. Holden, J. Michor and G. Teschl, Soliton equations and their algebro-geometric solutions: Vol. II. 1 + 1-dimensional discrete models, in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2008.
doi: 10.1017/CBO9780511543203. |
[6] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, Springer-Verlag, 1976. |
[7] |
R. Hirota, The direct method in soliton theory, in Cambridge Tracts in Mathematics, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511543043. |
[8] |
V. I. Inozemtsev,
The finite Toda lattices, Commun. Math. Phys., 121 (1989), 629-638.
|
[9] |
J. Jost and G. Wang,
Analytic aspects of the Toda system: I. A Moser-Trudinger inequality, Commun. Pure Appl. Anal., 51 (2001), 1289-1319.
doi: 10.1002/cpa.10004. |
[10] |
Y. Kodama and B. Shipman, Fifty years of the finite nonperiodic Toda lattice: a geometric and topological viewpoint, J. Phys. A, 51 (2018), 353001, 39pp.
doi: 10.1088/1751-8121/aacecf. |
[11] |
B. Kostant,
The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (1979), 195-338.
doi: 10.1016/0001-8708(79)90057-4. |
[12] |
Y. Lee, C. S. Lin, J. Wei and W. Yang,
Degree counting and Shadow system for Toda system of rank two: One bubbling, J. Differ. Equ., 7 (2018), 4343-4401.
doi: 10.1016/j.jde.2017.12.018. |
[13] |
Y. Lee, C. S. Lin, W. Yang and L. Zhang,
Degree counting for Toda system with simple singularity: one point blow up, J. Differ. Equ., 5 (2020), 2163-2209.
doi: 10.1016/j.jde.2019.09.016. |
[14] |
C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori, Ann. Math., (2010), 911–954.
doi: 10.4007/annals.2010.172.911. |
[15] |
C. L. Chai, C. S. Lin and C. L. Wang,
Mean field equations, hyperelliptic curves, and modular forms: I, Cambridge J. Math., 12 (2015), 127-274.
doi: 10.4310/CJM.2015.v3.n1.a3. |
[16] |
Y. Liu,
Even solutions of the Toda system with prescribed asymptotic behavior, Commun. Pure Appl. Anal., 10 (2011), 1779-1790.
doi: 10.3934/cpaa.2011.10.1779. |
[17] |
J. Moser, Finitely many mass points on the line under the influence of an exponential potential–an integrable system, in Dynamical Systems, Theory and Applications, Lecture Notes in Phys., (1975), 467–497. |
[18] |
G. Teschl,
Almost everything you always wanted to know about the Toda equation, Jahresber. Deutsch. Math. Verein., 103 (2001), 149-162.
|
[19] |
M. Toda, Theory of Nonlinear Lattices, 2$^{nd}$ edition, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-83219-2. |
show all references
References:
[1] |
M. A. Agrotis, P. A. Damianou and C. Sophocleous,
The Toda lattice is super-integrable, Phys. A, 365 (2006), 235-243.
doi: 10.1016/j.physa.2006.01.001. |
[2] |
M. Del Pino, M. Kowalczyk and F. Pacard,
Multiple-end solutions to the Allen-Cahn equation in $\mathbb{R}^{2}$, J. Funct. Anal., 258 (2010), 458-503.
doi: 10.1016/j.jfa.2009.04.020. |
[3] |
M. Del Pino, M. Kowalczyk, F. Pacard and J. Wei,
The Toda system and multiple-end solutions of autonomous planar elliptic problems, Adv. Math., 224 (2010), 1462-1516.
doi: 10.1016/j.aim.2010.01.003. |
[4] |
M. Del Pino, M. Kowalczyk and and J. Wei,
The Jacobi-Toda system and foliated interfaces, Discrete Contin. Dyn. Syst, 28 (2010), 975-1006.
doi: 10.3934/dcds.2010.28.975. |
[5] |
F. Gesztesy, H. Holden, J. Michor and G. Teschl, Soliton equations and their algebro-geometric solutions: Vol. II. 1 + 1-dimensional discrete models, in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2008.
doi: 10.1017/CBO9780511543203. |
[6] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, Springer-Verlag, 1976. |
[7] |
R. Hirota, The direct method in soliton theory, in Cambridge Tracts in Mathematics, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511543043. |
[8] |
V. I. Inozemtsev,
The finite Toda lattices, Commun. Math. Phys., 121 (1989), 629-638.
|
[9] |
J. Jost and G. Wang,
Analytic aspects of the Toda system: I. A Moser-Trudinger inequality, Commun. Pure Appl. Anal., 51 (2001), 1289-1319.
doi: 10.1002/cpa.10004. |
[10] |
Y. Kodama and B. Shipman, Fifty years of the finite nonperiodic Toda lattice: a geometric and topological viewpoint, J. Phys. A, 51 (2018), 353001, 39pp.
doi: 10.1088/1751-8121/aacecf. |
[11] |
B. Kostant,
The solution to a generalized Toda lattice and representation theory, Adv. Math., 34 (1979), 195-338.
doi: 10.1016/0001-8708(79)90057-4. |
[12] |
Y. Lee, C. S. Lin, J. Wei and W. Yang,
Degree counting and Shadow system for Toda system of rank two: One bubbling, J. Differ. Equ., 7 (2018), 4343-4401.
doi: 10.1016/j.jde.2017.12.018. |
[13] |
Y. Lee, C. S. Lin, W. Yang and L. Zhang,
Degree counting for Toda system with simple singularity: one point blow up, J. Differ. Equ., 5 (2020), 2163-2209.
doi: 10.1016/j.jde.2019.09.016. |
[14] |
C. S. Lin and C. L. Wang, Elliptic functions, Green functions and the mean field equations on tori, Ann. Math., (2010), 911–954.
doi: 10.4007/annals.2010.172.911. |
[15] |
C. L. Chai, C. S. Lin and C. L. Wang,
Mean field equations, hyperelliptic curves, and modular forms: I, Cambridge J. Math., 12 (2015), 127-274.
doi: 10.4310/CJM.2015.v3.n1.a3. |
[16] |
Y. Liu,
Even solutions of the Toda system with prescribed asymptotic behavior, Commun. Pure Appl. Anal., 10 (2011), 1779-1790.
doi: 10.3934/cpaa.2011.10.1779. |
[17] |
J. Moser, Finitely many mass points on the line under the influence of an exponential potential–an integrable system, in Dynamical Systems, Theory and Applications, Lecture Notes in Phys., (1975), 467–497. |
[18] |
G. Teschl,
Almost everything you always wanted to know about the Toda equation, Jahresber. Deutsch. Math. Verein., 103 (2001), 149-162.
|
[19] |
M. Toda, Theory of Nonlinear Lattices, 2$^{nd}$ edition, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-642-83219-2. |


[1] |
Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 |
[2] |
Linlin Dou. Singular solutions of Toda system in high dimensions. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3119-3142. doi: 10.3934/dcds.2022011 |
[3] |
Weiwei Ao. Sharp estimates for fully bubbling solutions of $B_2$ Toda system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1759-1788. doi: 10.3934/dcds.2016.36.1759 |
[4] |
Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975 |
[5] |
Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867 |
[6] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[7] |
Jérôme Coville, Juan Dávila. Existence of radial stationary solutions for a system in combustion theory. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 739-766. doi: 10.3934/dcdsb.2011.16.739 |
[8] |
Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171 |
[9] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[10] |
Xiaoyue Li, Xuerong Mao. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 523-545. doi: 10.3934/dcds.2009.24.523 |
[11] |
Johan Matheus Tuwankotta, Eric Harjanto. Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 2019, 6 (2) : 469-483. doi: 10.3934/jcd.2019024 |
[12] |
Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041 |
[13] |
Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial and Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73 |
[14] |
Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011 |
[15] |
Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1439-1467. doi: 10.3934/dcdsb.2019235 |
[16] |
Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465 |
[17] |
E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120 |
[18] |
Gerald Teschl. On the spatial asymptotics of solutions of the Toda lattice. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1233-1239. doi: 10.3934/dcds.2010.27.1233 |
[19] |
Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125 |
[20] |
Peter Markowich, Jesús Sierra. Non-uniqueness of weak solutions of the Quantum-Hydrodynamic system. Kinetic and Related Models, 2019, 12 (2) : 347-356. doi: 10.3934/krm.2019015 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]