• Previous Article
    Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru
  • CPAA Home
  • This Issue
  • Next Article
    Asymptotic and quenching behaviors of semilinear parabolic systems with singular nonlinearities
doi: 10.3934/cpaa.2021076
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Hadamard Semidifferential, Oriented Distance Function, and some Applications

Département de mathématiques et de statistique and Centre de recherches mathématiques, Université de Montréal, CP 6128, succ. Centre-ville, Montréal (Qc), Canada H3C 3J7

Received  December 2020 Revised  March 2021 Early access April 2021

Fund Project: This research was supported by the Natural Sciences and Engineering research Council of Canada through Discovery Grants RGPIN-05279-2017 and a Grant from the Collaborative research and Training Experience (CREATE) program in Simulation-based Engineering Science

The Hadamard semidifferential calculus preserves all the operations of the classical differential calculus including the chain rule for a large family of non-differentiable functions including the continuous convex functions. It naturally extends from the $ n $-dimensional Euclidean space $ \operatorname{\mathbb R}^n $ to subsets of topological vector spaces. This includes most function spaces used in Optimization and the Calculus of Variations, the metric groups used in Shape and Topological Optimization, and functions defined on submanifolds.

Certain set-parametrized functions such as the characteristic function $ \chi_A $of a set $ A $, the distance function $ d_A $ to $ A $, and the oriented (signed) distance function $ b_A = d_A-d_{ \operatorname{\mathbb R}^n\backslash A} $ can be used to identify a space of subsets of $ \operatorname{\mathbb R}^n $ with a metric space of set-parametrized functions. Many geometrical properties of domains (convexity, outward unit normal, curvatures, tangent space, smoothness of boundaries) can be expressed in terms of the analytical properties of $ b_A $ and a simple intrinsic differential calculus is available for functions defined on hypersurfaces without appealing to local bases or Christoffel symbols.

The object of this paper is to extend the use of the Hadamard semidifferential and of the oriented distance function from finite to infinite dimensional spaces with some selected illustrative applications from shapes and geometries, plasma physics, and optimization.

Citation: Michel C. Delfour. Hadamard Semidifferential, Oriented Distance Function, and some Applications. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021076

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961


Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473


Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313


Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098


Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161


Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760


Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks & Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733


Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577


Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491


Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417


Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021012


Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial & Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381


Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial & Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411


Caglar S. Aksezer. On the sensitivity of desirability functions for multiresponse optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 685-696. doi: 10.3934/jimo.2008.4.685


Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159


Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266


Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101


Mehar Chand, Jyotindra C. Prajapati, Ebenezer Bonyah, Jatinder Kumar Bansal. Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 539-560. doi: 10.3934/dcdss.2020030


Roberto Avanzi, Nicolas Thériault. A filtering method for the hyperelliptic curve index calculus and its analysis. Advances in Mathematics of Communications, 2010, 4 (2) : 189-213. doi: 10.3934/amc.2010.4.189


Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic & Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625

2020 Impact Factor: 1.916

Article outline

[Back to Top]