doi: 10.3934/cpaa.2021079

Three-dimensional supersonic flows of Euler-Poisson system for potential flow

1. 

Department of Mathematical Sciences, KAIST, 291 Daehak-Ro, Yuseong-Gu, Daejeon 34141, Republic of Korea

2. 

Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-Gu, Seoul 02455, Republic of Korea

3. 

Center for Mathematical Analysis and Computation (CMAC), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea

* Corresponding author

Received  February 2021 Revised  March 2021 Published  May 2021

Fund Project: The first author is supported in part by Samsung Science and Technology Foundation under Project Number SSTF-BA1502-51. The second author is supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT and MOE) (No. 2015R1A5A1009350 and No. 2020R1I1A1A01058480)

We prove the unique existence of supersonic solutions of the Euler-Poisson system for potential flow in a three-dimensional rectangular cylinder when prescribing the velocity and the strength of electric field at the entrance. Overall, the main framework is similar to [1], but there are several technical differences to be taken care of vary carefully. And, it is our main goal to treat all the technical differences occurring when one considers a three dimensional supersonic solution of the steady Euler-Poisson system.

Citation: Myoungjean Bae, Hyangdong Park. Three-dimensional supersonic flows of Euler-Poisson system for potential flow. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021079
References:
[1]

M. BaeB. DuanJ. Xiao and C. Xie, Structural Stability of Supersonic Solutions to the Euler-Poisson System, Arch. Rational Mech. Anal., 239 (2021), 679-731.  doi: 10.1007/s00205-020-01583-7.  Google Scholar

[2]

M. Bae, B. Duan and C. Xie, Subsonic Flow for the Multidimensional Euler-Poisson System, Arch. Rational Mech. Anal., 220 (2016), 155–191. doi: 10.1007/s00205-015-0930-6.  Google Scholar

[3]

M. Bae, B. Duan and C. Xie, Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46 (2014), 3455–3480. doi: 10.1137/13094222X.  Google Scholar

[4]

M. Bae, B. Duan and C. Xie, Two dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci., 25 (2015), 2721–2747. doi: 10.1142/S0218202515500591.  Google Scholar

[5]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[6]

P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Annali di Matematica pura ed applicata, 165 (1993), 87-98.  doi: 10.1007/BF01765842.  Google Scholar

[7]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577.  doi: 10.1080/03605309208820853.  Google Scholar

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin.  Google Scholar

[9]

F. M. HuangR. H. Pan and H. M. Yu, Large time behavior of Euler-Poisson system for semiconductor, Sci. China Ser. A, 51 (2008), 965-972.  doi: 10.1007/s11425-008-0049-4.  Google Scholar

[10]

T. LuoR. Natalini and Z. P. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1999), 810-830.  doi: 10.1137/S0036139996312168.  Google Scholar

[11]

T. LuoJ. RauchC. J. Xie and Z. P. Xin, Stability of transonic shock solutions for one-dimensional Euler-Poisson equations, Arch. Rational Mech. Anal., 202 (2011), 787-827.  doi: 10.1007/s00205-011-0433-z.  Google Scholar

[12]

T. Luo and Z. P. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462.  doi: 10.4310/CMS.2012.v10.n2.a1.  Google Scholar

[13]

P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew. Math. Phys., 42 (1991), 389-407.  doi: 10.1007/BF00945711.  Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[15]

Y. J. Peng and I. Violet, Example of supersonic solutions to a steady state Euler-Poisson system, Appl. Math. Lett., 19 (2006), 1335-1340.  doi: 10.1016/j.aml.2006.01.015.  Google Scholar

[16]

M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 63 (2005), 251-268.  doi: 10.1090/S0033-569X-05-00942-1.  Google Scholar

[17]

L. M. Yeh, On a steady state Euler-Poisson model for semiconductors, Commun. Partial Differ. Equ., 21 (1996), 1007-1034.  doi: 10.1080/03605309608821216.  Google Scholar

show all references

References:
[1]

M. BaeB. DuanJ. Xiao and C. Xie, Structural Stability of Supersonic Solutions to the Euler-Poisson System, Arch. Rational Mech. Anal., 239 (2021), 679-731.  doi: 10.1007/s00205-020-01583-7.  Google Scholar

[2]

M. Bae, B. Duan and C. Xie, Subsonic Flow for the Multidimensional Euler-Poisson System, Arch. Rational Mech. Anal., 220 (2016), 155–191. doi: 10.1007/s00205-015-0930-6.  Google Scholar

[3]

M. Bae, B. Duan and C. Xie, Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46 (2014), 3455–3480. doi: 10.1137/13094222X.  Google Scholar

[4]

M. Bae, B. Duan and C. Xie, Two dimensional subsonic flows with self-gravitation in bounded domain, Math. Models Methods Appl. Sci., 25 (2015), 2721–2747. doi: 10.1142/S0218202515500591.  Google Scholar

[5]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Lett., 3 (1990), 25-29.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[6]

P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Annali di Matematica pura ed applicata, 165 (1993), 87-98.  doi: 10.1007/BF01765842.  Google Scholar

[7]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17 (1992), 553-577.  doi: 10.1080/03605309208820853.  Google Scholar

[8]

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin.  Google Scholar

[9]

F. M. HuangR. H. Pan and H. M. Yu, Large time behavior of Euler-Poisson system for semiconductor, Sci. China Ser. A, 51 (2008), 965-972.  doi: 10.1007/s11425-008-0049-4.  Google Scholar

[10]

T. LuoR. Natalini and Z. P. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1999), 810-830.  doi: 10.1137/S0036139996312168.  Google Scholar

[11]

T. LuoJ. RauchC. J. Xie and Z. P. Xin, Stability of transonic shock solutions for one-dimensional Euler-Poisson equations, Arch. Rational Mech. Anal., 202 (2011), 787-827.  doi: 10.1007/s00205-011-0433-z.  Google Scholar

[12]

T. Luo and Z. P. Xin, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10 (2012), 419-462.  doi: 10.4310/CMS.2012.v10.n2.a1.  Google Scholar

[13]

P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew. Math. Phys., 42 (1991), 389-407.  doi: 10.1007/BF00945711.  Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[15]

Y. J. Peng and I. Violet, Example of supersonic solutions to a steady state Euler-Poisson system, Appl. Math. Lett., 19 (2006), 1335-1340.  doi: 10.1016/j.aml.2006.01.015.  Google Scholar

[16]

M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 63 (2005), 251-268.  doi: 10.1090/S0033-569X-05-00942-1.  Google Scholar

[17]

L. M. Yeh, On a steady state Euler-Poisson model for semiconductors, Commun. Partial Differ. Equ., 21 (1996), 1007-1034.  doi: 10.1080/03605309608821216.  Google Scholar

[1]

Steinar Evje, Kenneth H. Karlsen. Hyperbolic-elliptic models for well-reservoir flow. Networks & Heterogeneous Media, 2006, 1 (4) : 639-673. doi: 10.3934/nhm.2006.1.639

[2]

Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957

[3]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[4]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[5]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[6]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[7]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[8]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[9]

Myoungjean Bae, Yong Park. Radial transonic shock solutions of Euler-Poisson system in convergent nozzles. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 773-791. doi: 10.3934/dcdss.2018049

[10]

Hao Chen, Kaitai Li, Yuchuan Chu, Zhiqiang Chen, Yiren Yang. A dimension splitting and characteristic projection method for three-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 127-147. doi: 10.3934/dcdsb.2018111

[11]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[12]

Zhong Tan, Yong Wang, Fanhui Xu. Large-time behavior of the full compressible Euler-Poisson system without the temperature damping. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1583-1601. doi: 10.3934/dcds.2016.36.1583

[13]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[14]

Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333

[15]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021017

[16]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[17]

Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839

[18]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete & Continuous Dynamical Systems, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[19]

Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329

[20]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

2019 Impact Factor: 1.105

Article outline

[Back to Top]