We are concerned with the large-time asymptotic behaviors towards the planar rarefaction wave to the three-dimensional (3D) compressible and isentropic Navier-Stokes equations in half space with Navier boundary conditions. It is proved that the planar rarefaction wave is time-asymptotically stable for the 3D initial-boundary value problem of the compressible Navier-Stokes equations in $ \mathbb{R}^+\times \mathbb{T}^2 $ with arbitrarily large wave strength. Compared with the previous work [
Citation: |
[1] |
T. Chang, L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, John Kileg & Sons Inc., New York, (1989).
![]() ![]() |
[2] |
G. Q. Chen and J. Chen, Stability of rarefaction waves and vacuum states for the multidimensional Euler equations, J. Hyperbolic Differ. Equ., 4 (2007), 105-122.
doi: 10.1142/S0219891607001070.![]() ![]() ![]() |
[3] |
S. X. Chen, Multidimensional Riemann problem for semi-linear wave equations, Commun. Partial Differ. Equ., 17 (1992), 715-736.
doi: 10.1080/03605309208820861.![]() ![]() ![]() |
[4] |
S. X. Chen, Construction of solutions to M-D Riemann problems for a $2\times2$ quasilinear hyperbolic system, Chinese Ann. Math. Ser. B, 18 (1997), 345–358.
![]() ![]() |
[5] |
S. X. Chen and A. F. Qu, Two-dimensional Riemann problems for Chaplygin gas, SIAM J. Math. Anal., 44 (2012), 2146-2178.
doi: 10.1137/110838091.![]() ![]() ![]() |
[6] |
E. Feireisl and O. Kreml, Uniqueness of rarefaction waves in multidimensional compressible Euler system, J. Hyperbolic Differ. Equ., 12 (2015), 489-499.
doi: 10.1142/S0219891615500149.![]() ![]() ![]() |
[7] |
E. Feireisl, O. Kreml and and A. Vasseur, Stability of the isentropic Riemann solutions of the full multi-dimensional Euler system, SIAM J. Math. Anal., 47 (2015), 2416-2425.
doi: 10.1137/140999827.![]() ![]() ![]() |
[8] |
J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws, Arch. Rational. Mech. Anal., 95 (1986), 325-344.
doi: 10.1007/BF00276840.![]() ![]() ![]() |
[9] |
J. Goodman, Stability of viscous scalar shock fronts in several dimensions, Trans. Amer. Math. Soc., 311 (1989), 683-695.
doi: 10.2307/2001146.![]() ![]() ![]() |
[10] |
H. Hokari and A. Matsumura, Asymptotics toward one-dimensional rarefaction wave for the solution of two-dimensional compressible Euler equation with an artificial viscosity, Asymptot. Anal., 15 (1997), 283-298.
![]() ![]() |
[11] |
F. M. Huang, A. Matsumura and X. D. Shi, A gas-solid free boundary problem for a compressible viscous gas, SIAM J. Math. Anal., 34 (2003), 1331-1355.
doi: 10.1137/S0036141002403730.![]() ![]() ![]() |
[12] |
F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuities with general perturbation for gas motion, Adv. Math., 219 (2008), 1246-1297.
doi: 10.1016/j.aim.2008.06.014.![]() ![]() ![]() |
[13] |
J. Humpherys, G. Lyng and K. Zumbrun, Multidimensional stability of large-amplitude Navier-Stokes shocks, Arch. Ration. Mech. Anal., 226 (2017), 923-973.
doi: 10.1007/s00205-017-1147-7.![]() ![]() ![]() |
[14] |
P. Lax, Hyperbolic systems of conservation laws, II, Commun. Pure Appl. Math., 10 (1957), 537-566.
doi: 10.1002/cpa.3160100406.![]() ![]() ![]() |
[15] |
H. L. Li, T. Wang and Y. Wang, Wave phenomena to the three-dimensional fluid-particle model, Preprint, (2020).
![]() |
[16] |
L. A. Li, T. Wang and Y. Wang, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 230 (2018), 911-937.
doi: 10.1007/s00205-018-1260-2.![]() ![]() ![]() |
[17] |
L. A. Li and Y. Wang, Stability of planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50 (2018), 4937-4963.
doi: 10.1137/18M1171059.![]() ![]() ![]() |
[18] |
T. P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985), 1-108.
doi: 10.1090/memo/0328.![]() ![]() ![]() |
[19] |
T. P. Liu and Z. P. Xin, Pointwise decay to contact discontinuities for systems of viscous conservation laws, Asian J. Math., 1 (1997), 34-84.
doi: 10.4310/AJM. 1997. v1. n1. a3.![]() ![]() ![]() |
[20] |
T. P. Liu and Y. N. Zeng, Shock waves in conservation laws with physical viscosity, Mem. Amer. Math. Soc., 234 (2015), no. 1105, vi+168.
doi: 10.1090/memo/1105.![]() ![]() ![]() |
[21] |
A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Nonlinear Anal., 47 (2001), 4269-4282.
doi: 10.1016/S0362-546X(01)00542-9.![]() ![]() ![]() |
[22] |
A. Matsumura and K. Nishihara, On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17-25.
doi: 10.1007/BF03167036.![]() ![]() ![]() |
[23] |
A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction wave of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13.
doi: 10.1007/BF03167088.![]() ![]() ![]() |
[24] |
K. Nishihara, T. Yang and H. J. Zhao, Nonlinear stability of strong rarefaction wave for compressible Navier-Stokes equations, SIAM J. Math. Anal., 35 (2004), 1561-1597.
doi: 10.1137/S003614100342735X.![]() ![]() ![]() |
[25] |
J. Smoller, "Shock Waves and Reaction-Diffusion Equations", Springer, New York, 1994.
doi: 10.1007/978-1-4612-0873-0.![]() ![]() ![]() |
[26] |
A. Szepessy and Z. P. Xin, Nonlinear stability of viscous shock waves, Arch. Rational Mech. Anal., 122 (1993), 53-103.
doi: 10.1007/BF01816555.![]() ![]() ![]() |
[27] |
V. A. Solonnikov, On solvability of an initial-boundary value problem for the equations of motion of a viscous compressible fluid, in: Studies on Linear Operators and Function Theory. 6 [in Russain], Nauka, Leningrad, (1976), 128–142.
![]() ![]() |
[28] |
B. Riemann, Uberdie Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 8 (1860), 43–65.
![]() |
[29] |
T. Wang and Y. Wang, Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation, Kinet. Relat. Models, 12 (2019), 637-679.
doi: 10.3934/krm.2019025.![]() ![]() ![]() |
[30] |
Z. P. Xin, Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions, Trans. Amer. Math. Soc., 319 (1990), 805-820.
doi: 10.2307/2001267.![]() ![]() ![]() |