The image in $ C^{\infty} $ for a class of complex vector fields, containing the Mizohata operator, was characterized.
Citation: |
[1] |
M. S. Baouendi, C. H. Chang and F. Treves, Microlocal Hypo-Analytic and Extension of CR Functions, J. Differ. Geom., 18 (1983), 331-391.
![]() ![]() |
[2] |
M. S. Baouendi and F. Treves, A local constancy principle for the solutions of certain overdetermined systems of first-order linear partial differential equations, in Advances in Mathematics Supplementary Studies, Academic Press, New York, (1981), 245-262.
![]() ![]() |
[3] |
S. Berhanu, P. D. Cordaro and J. Hounie, An introduction to involutive structures, New mathematical monographs, University Press, (2008).
![]() ![]() |
[4] |
P. D. Cordaro, Resolubilidade das Equações Diferenciais Parciais Lineares, Matemática Universitária, 14, (1992), 51-67.
![]() |
[5] |
P. D. Cordaro, Sistemas de Campos Vetoriais Complexos, Instituto de matemática pura e aplicada, (1986).
![]() |
[6] |
L. Garding and B. Malgrange, Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Math. Scand., 9 (1961), 5-21.
doi: 10.7146/math.scand.a-10619.![]() ![]() ![]() |
[7] |
V. Grushin, A differential Equation without a solution, Mathematical Notes, 10 (1971), 499-501.
![]() ![]() |
[8] |
N. Hanges, Almost mizohata operators, Trans. Amer. Math. Soc., 2 (1986), 663-675.
doi: 10.2307/2000030.![]() ![]() ![]() |
[9] |
G. Hoepfner and R. Medrado, Microlocal regularity for Mizohata type differential operators, J. Inst. Math. Jussieu, 19 (2020), 1185-1209.
doi: 10.1017/S1474748018000361.![]() ![]() ![]() |
[10] |
L. Hörmander, Differential equations without solutions, Math. Ann., 140 (1960), 169-173.
doi: 10.1007/BF01361142.![]() ![]() ![]() |
[11] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, 1989.
doi: 10.1007/978-3-642-61497-2.![]() ![]() ![]() |
[12] |
H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), 155-158.
doi: 10.2307/1970121.![]() ![]() ![]() |
[13] |
S. Mizohata, Une remarque sur les opérateurs différentielshypoelliptiques et partiellement hypoelliptiques, J. Math. Kyoto Univ., 1-3 (1962), 411-423.
doi: 10.1215/kjm/1250525013.![]() ![]() ![]() |
[14] |
H. Ninomiya, A necessary and sufficient condition of local integrability, J. Math Kyoto Univ., 39-4 (1999), 685-696.
doi: 10.1215/kjm/1250517821.![]() ![]() ![]() |
[15] |
L. Nirenberg and F. Treves, On local solvability of linear partial differential equations, I. Necessary conditions, Commun. Pure Appl. Math, 23 (1970), 1-38.
doi: 10.1002/cpa.3160230102.![]() ![]() ![]() |
[16] |
L. Nirenberg and F. Treves, On local solvability of linear partial differential equations, II. Sufficient conditions, Commun. Pure Appl. Math, 23 (1970), 459-510.
doi: 10.1002/cpa.3160230314.![]() ![]() ![]() |
[17] |
L. Nirenberg and F. Treves, Solvability of a order linear partial differential equation, Commun. Pure Appl. Math, 16 (1963), 331-351.
doi: 10.1002/cpa.3160160308.![]() ![]() ![]() |
[18] |
L. Nunes, Resolubilidade Local Para Duas Classes de Campos de Vetores Suaves Complexos, Ph. D. thesis (in portuguese), UFSCar, 2016.
![]() |
[19] |
F. Treves, Demarks about certain first order linear PDE in two variables, Comm. Partial Differential Equations, 5 (1980), 381-425.
doi: 10.1080/0360530800882143.![]() ![]() ![]() |
[20] |
J. Sjöstrand, Note on a paper of F. Treves concerning Mizohata type operators, Duke Math. J., 47 (1980), 601-608.
![]() ![]() |
[21] |
M. Yamamoto, On partially hypoelliptic operators, Osaka Math. J., 15 (1963), 233-247.
![]() ![]() |