Advanced Search
Article Contents
Article Contents

On local solvability for a class of generalized Mizohata equations

  • * Corresponding author

    * Corresponding author 
The first author was partially supported by CAPES. The second author is a associate researcher of the Thematic project no. 2018/14316-3 (FAPESP)
Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • The image in $ C^{\infty} $ for a class of complex vector fields, containing the Mizohata operator, was characterized.

    Mathematics Subject Classification: Primary: 35F05; Secondary: 35A01.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Integration domain complexification

  • [1] M. S. BaouendiC. H. Chang and F. Treves, Microlocal Hypo-Analytic and Extension of CR Functions, J. Differ. Geom., 18 (1983), 331-391. 
    [2] M. S. Baouendi and F. Treves, A local constancy principle for the solutions of certain overdetermined systems of first-order linear partial differential equations, in Advances in Mathematics Supplementary Studies, Academic Press, New York, (1981), 245-262.
    [3] S. Berhanu, P. D. Cordaro and J. Hounie, An introduction to involutive structures, New mathematical monographs, University Press, (2008).
    [4] P. D. Cordaro, Resolubilidade das Equações Diferenciais Parciais Lineares, Matemática Universitária, 14, (1992), 51-67.
    [5] P. D. Cordaro, Sistemas de Campos Vetoriais Complexos, Instituto de matemática pura e aplicada, (1986).
    [6] L. Garding and B. Malgrange, Opérateurs différentiels partiellement hypoelliptiques et partiellement elliptiques, Math. Scand., 9 (1961), 5-21.  doi: 10.7146/math.scand.a-10619.
    [7] V. Grushin, A differential Equation without a solution, Mathematical Notes, 10 (1971), 499-501. 
    [8] N. Hanges, Almost mizohata operators, Trans. Amer. Math. Soc., 2 (1986), 663-675.  doi: 10.2307/2000030.
    [9] G. Hoepfner and R. Medrado, Microlocal regularity for Mizohata type differential operators, J. Inst. Math. Jussieu, 19 (2020), 1185-1209.  doi: 10.1017/S1474748018000361.
    [10] L. Hörmander, Differential equations without solutions, Math. Ann., 140 (1960), 169-173.  doi: 10.1007/BF01361142.
    [11] L. Hörmander, The Analysis of Linear Partial Differential Operators, Springer-Verlag, 1989. doi: 10.1007/978-3-642-61497-2.
    [12] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), 155-158.  doi: 10.2307/1970121.
    [13] S. Mizohata, Une remarque sur les opérateurs différentielshypoelliptiques et partiellement hypoelliptiques, J. Math. Kyoto Univ., 1-3 (1962), 411-423.  doi: 10.1215/kjm/1250525013.
    [14] H. Ninomiya, A necessary and sufficient condition of local integrability, J. Math Kyoto Univ., 39-4 (1999), 685-696.  doi: 10.1215/kjm/1250517821.
    [15] L. Nirenberg and F. Treves, On local solvability of linear partial differential equations, I. Necessary conditions, Commun. Pure Appl. Math, 23 (1970), 1-38.  doi: 10.1002/cpa.3160230102.
    [16] L. Nirenberg and F. Treves, On local solvability of linear partial differential equations, II. Sufficient conditions, Commun. Pure Appl. Math, 23 (1970), 459-510.  doi: 10.1002/cpa.3160230314.
    [17] L. Nirenberg and F. Treves, Solvability of a order linear partial differential equation, Commun. Pure Appl. Math, 16 (1963), 331-351.  doi: 10.1002/cpa.3160160308.
    [18] L. Nunes, Resolubilidade Local Para Duas Classes de Campos de Vetores Suaves Complexos, Ph. D. thesis (in portuguese), UFSCar, 2016.
    [19] F. Treves, Demarks about certain first order linear PDE in two variables, Comm. Partial Differential Equations, 5 (1980), 381-425.  doi: 10.1080/0360530800882143.
    [20] J. Sjöstrand, Note on a paper of F. Treves concerning Mizohata type operators, Duke Math. J., 47 (1980), 601-608. 
    [21] M. Yamamoto, On partially hypoelliptic operators, Osaka Math. J., 15 (1963), 233-247. 
  • 加载中



Article Metrics

HTML views(267) PDF downloads(144) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint