June  2021, 20(6): 2341-2359. doi: 10.3934/cpaa.2021082

An optimal osmotic control problem for a concrete dam system

1. 

Department of Mathematics, Northeast Normal University, Changchun 130024, China

2. 

Mathematics Department, Towson University, Towson, Maryland 21252, USA

* Corresponding author

Received  November 2020 Revised  March 2021 Published  June 2021 Early access  May 2021

In this paper, an optimal control problem for a concrete dam system is considered. First, a mathematical model on the optimal osmotic control for basis of concrete dams is built up, and an optimal line-wise control of the system governed by the hybrid problem for elliptic partial differential equations is investigated. Then, the regularity of the generalized solution to the adjoint state equations, and the existence and uniqueness of the $ {\rm L^2} $-solution for state equations are discussed and examined. Subsequently, the existence and uniqueness of the optimal control for the system, and a necessary and sufficient conditions for a control to be optimal and the optimality system are claimed and derived. Finally, the applications of the penalty shifting method with calculation of the optimal control of the system are studied, and the convergence of the method on an appropriate Hilbert space is claimed and proved.

Citation: Renzhao Chen, Xuezhang Hou. An optimal osmotic control problem for a concrete dam system. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2341-2359. doi: 10.3934/cpaa.2021082
References:
[1] R. A. Adams, Sobolev Space, New york, Academic Press, 1975.   Google Scholar
[2]

J. Bear, Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, INC. 1972. Google Scholar

[3] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977.   Google Scholar
[4]

E. Casas and J. P. Raymond, Error estimates for the numerical approximation of dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586-1611.  doi: 10.1137/050626600.  Google Scholar

[5]

R. Z. Chen, Optimal boundary control of prabolic system on doubly connected rogin in new space, Sci. China, 38 (1995), 933-944.   Google Scholar

[6]

G. Dipillo and L. Grippo, On the method multipliers for a class of distributed parameter systems, inProceedeings of 2nd IFAC Symposium on Control of Distributed Parameter Systems, Warmick, England, 1977.  Google Scholar

[7] O. A. Lady$\check{z}$enskaja and N. N. Ural'ceva, Linear and Quasilinear Equation of Elliptic Type, Academic Press, New York, 1968.   Google Scholar
[8]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.  Google Scholar

[9]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, I. Springer-Verlag, Berlin, 1972.  Google Scholar

[10]

Y. S. Luo, Necessary optimality conditions for some control problems of elliptic equations with venttsel boundary conditions, Appl. Math. Optim., 61 (2010), 337-351.  doi: 10.1007/s00245-009-9078-8.  Google Scholar

[11]

D. Tonon, M. Aronna and D. Kalise, Optimal Control: Novel Directional and Applications, Lecture Notes in Mathematics, 2017. doi: 10.1007/978-3-319-60771-9.  Google Scholar

[12]

S. Y. WengH. Y. GaoR. Z. Chen and X. Z. Hou, Penalty shifting method on calaulation of optimal linewise control of dam-detouring osmtic system for concrete dams with heterogemous, Appl. Math. Comput., 169 (2005), 1129-1141.  doi: 10.1016/j.amc.2004.10.089.  Google Scholar

[13]

K. Yosida, Functional Analysis, Springer-Verlag, 1978.  Google Scholar

show all references

References:
[1] R. A. Adams, Sobolev Space, New york, Academic Press, 1975.   Google Scholar
[2]

J. Bear, Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, INC. 1972. Google Scholar

[3] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977.   Google Scholar
[4]

E. Casas and J. P. Raymond, Error estimates for the numerical approximation of dirichlet boundary control for semilinear elliptic equations, SIAM J. Control Optim., 45 (2006), 1586-1611.  doi: 10.1137/050626600.  Google Scholar

[5]

R. Z. Chen, Optimal boundary control of prabolic system on doubly connected rogin in new space, Sci. China, 38 (1995), 933-944.   Google Scholar

[6]

G. Dipillo and L. Grippo, On the method multipliers for a class of distributed parameter systems, inProceedeings of 2nd IFAC Symposium on Control of Distributed Parameter Systems, Warmick, England, 1977.  Google Scholar

[7] O. A. Lady$\check{z}$enskaja and N. N. Ural'ceva, Linear and Quasilinear Equation of Elliptic Type, Academic Press, New York, 1968.   Google Scholar
[8]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.  Google Scholar

[9]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, I. Springer-Verlag, Berlin, 1972.  Google Scholar

[10]

Y. S. Luo, Necessary optimality conditions for some control problems of elliptic equations with venttsel boundary conditions, Appl. Math. Optim., 61 (2010), 337-351.  doi: 10.1007/s00245-009-9078-8.  Google Scholar

[11]

D. Tonon, M. Aronna and D. Kalise, Optimal Control: Novel Directional and Applications, Lecture Notes in Mathematics, 2017. doi: 10.1007/978-3-319-60771-9.  Google Scholar

[12]

S. Y. WengH. Y. GaoR. Z. Chen and X. Z. Hou, Penalty shifting method on calaulation of optimal linewise control of dam-detouring osmtic system for concrete dams with heterogemous, Appl. Math. Comput., 169 (2005), 1129-1141.  doi: 10.1016/j.amc.2004.10.089.  Google Scholar

[13]

K. Yosida, Functional Analysis, Springer-Verlag, 1978.  Google Scholar

Figure 1.  Drainage set
Figure 2.  Drainage pore in coordinate system
Figure 3.  Divide of Ω
Figure 4.  Sketch vertical section
[1]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[2]

Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial & Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003

[3]

Gabriella Zecca. An optimal control problem for some nonlinear elliptic equations with unbounded coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1393-1409. doi: 10.3934/dcdsb.2019021

[4]

Zhen-Zhen Tao, Bing Sun. Galerkin spectral method for elliptic optimal control problem with $L^2$-norm control constraint. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021220

[5]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[6]

Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control & Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020

[7]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[8]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[9]

Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021055

[10]

Linhe Zhu, Wenshan Liu. Spatial dynamics and optimization method for a network propagation model in a shifting environment. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1843-1874. doi: 10.3934/dcds.2020342

[11]

Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060

[12]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[13]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[14]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[15]

Xin Yu, Guojie Zheng, Chao Xu. The $C$-regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 5163-5181. doi: 10.3934/dcds.2016024

[16]

Ali Hamidoǧlu. On general form of the Tanh method and its application to nonlinear partial differential equations. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 175-181. doi: 10.3934/naco.2016007

[17]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[18]

Urszula Ledzewicz, Stanislaw Walczak. Optimal control of systems governed by some elliptic equations. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 279-290. doi: 10.3934/dcds.1999.5.279

[19]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[20]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (66)
  • HTML views (110)
  • Cited by (0)

Other articles
by authors

[Back to Top]