In this paper, we are concerned with the equations that are in the form of the linear combinations of the elementary symmetric functions of a Hermitian matrix on compact K$ \ddot{a} $hler manifolds. Under the assumption of the cone condition, we obtain a priori estimates for the class of complex quotient equations. Then using the method of continuity, we prove an existence result.
Citation: |
[1] |
Z. Blocki, Weak solutions to the complex Hessian equation, Ann. Inst. Fourier (Grenoble), 55 (2005), 1735-1756.
![]() ![]() |
[2] |
P. Cherrier, Equations de Monge-Amp$\grave{e}$re sur les vari$\acute{e}$t$\acute{e}$s Hermitienne compactes, Bull. Sc. Math., 2 (1987), 343-385.
![]() ![]() |
[3] |
J. Chu and N. McCleerey, Fully non-linear degenerate elliptic equations in complex geometry, preprint, arXiv: 2010.03431v1.
![]() |
[4] |
S. Dinew and S. Kolodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations, Amer. J. Math., 139 (2017), 403-415.
doi: 10.1353/ajm.2017.0009.![]() ![]() ![]() |
[5] |
H. Fang, M. Lai and X. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653 (2011), 189-220.
doi: 10.1515/CRELLE.2011.027.![]() ![]() ![]() |
[6] |
B. Guan and Q. Li, Complex Monge-Amp$\grave{e}$re equations and totally real submanifolds, Adv. Math., 225 (2010), 1185-1223.
doi: 10.1016/j.aim.2010.03.019.![]() ![]() ![]() |
[7] |
P. Guan and X. Zhang, A class of curvature type equations. Pure and Applied Math Quarterly, preprint, arXiv: 1909.03645.
![]() |
[8] |
A. Hanani, Equations du type de Monge-Amp$\grave{e}$re sur les vari$\acute{e}$t$\acute{e}$s hermitiennes compactes, J. Funct. Anal., 137 (1996), 49-75.
doi: 10.1006/jfan.1996.0040.![]() ![]() ![]() |
[9] |
Z. L. Hou, X. N. Ma and D. M. Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold, Math. Res. Lett., 17 (2010), 547-561.
doi: 10.4310/MRL.2010.v17.n3.a12.![]() ![]() ![]() |
[10] |
N. V. Krylov, On the general notion of fully nonlinear second order elliptic equation, Trans. Amer. Math. Soc., 3 (1995), 857-895.
doi: 10.2307/2154876.![]() ![]() ![]() |
[11] |
M. Lin and N. S. Trudinger., On some inequalities for elementary symmetric functions, Bull. Austral. Math. Soc., 50 (1994), 317-326.
doi: 10.1017/S0004972700013770.![]() ![]() ![]() |
[12] |
C. Li, C. Ren and Z. Wang, Curvature estimates for convex solutions of some fully nonlinear Hessian-type equations, Calc. Var. Partial Differ. Equ., 58 (2019), 1-32.
doi: 10.1007/s00526-019-1623-z.![]() ![]() ![]() |
[13] |
D. Phong and T. Dat, Fully non-linear parabolic equations on compact Hermitian manifolds, preprint, arXiv: 1711.10697v2.
![]() |
[14] |
J. Spruck, Geometric aspects of the theory of fully nonlinear elliptic equations, Clay Mathematics Proceedings, 2 (2005), 283-309.
![]() ![]() |
[15] |
J. Song and B. Weinkove, On the convergence and singularities of the J -flow with applications to the Mabuchi energy, Commun. Pure Appl. Math., 61 (2008), 210-229.
doi: 10.1002/cpa.20182.![]() ![]() ![]() |
[16] |
W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds, J. Geom. Anal., 26 (2016), 2459-2473.
doi: 10.1007/s12220-015-9634-2.![]() ![]() ![]() |
[17] |
W. Sun, On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: $L^{\infty}$estimate, Commun. Pure Appl. Math., 70 (2017), 172-199.
doi: 10.1002/cpa.21652.![]() ![]() ![]() |
[18] |
G. Sz$\acute{e}$kelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differ. Geom., 109 (2018), 337-378.
doi: 10.4310/jdg/1527040875.![]() ![]() ![]() |
[19] |
V. Tosatti and B. Weinkove, Estimates for the complex Monge-Amp$\grave{e}$re equation on Hermitian and balanced manifolds, Asian J. Math., 14 (2010), 19-40.
doi: 10.4310/AJM.2010.v14.n1.a3.![]() ![]() ![]() |
[20] |
V. Tosatti and B. Weinkove, The complex Monge-Amp$\grave{e}$re equation on compact Hermitian manifolds, J. Amer. Math. Soc., 23 (2010), 1187-1195.
doi: 10.1090/S0894-0347-2010-00673-X.![]() ![]() ![]() |
[21] |
V. Tosatti, Y. Wang, B. Weinkove and X. Yang, $C^{2, \alpha}$ estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. Partial Differ. Equ., 54 (2015), 431-453.
doi: 10.1007/s00526-014-0791-0.![]() ![]() ![]() |
[22] |
S. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Amp$\grave{e}$re equation, I, Commun. Pure Appl. Math., 31 (1978), 339-411.
doi: 10.1002/cpa.3160310304.![]() ![]() ![]() |
[23] |
X. Zhang and X. Zhang, Regularity estimates of solutions to complex Monge-Amp$\grave{e}$re equations on Hermitian manifolds, J. Funct. Anal., 260 (2011), 2004-2026.
doi: 10.1016/j.jfa.2010.12.024.![]() ![]() ![]() |
[24] |
D. Zhang, Hessian equations on closed Hermitian manifolds, Pacific J. Math., 291 (2017), 485-510.
doi: 10.2140/pjm.2017.291.485.![]() ![]() ![]() |