Advanced Search
Article Contents
Article Contents

Density functions of distribution dependent SDEs driven by Lévy noises

This work is supported by NNSFC (No. 11971227, 11790272)
Abstract Full Text(HTML) Related Papers Cited by
  • By Malliavin calculus for Wiener-Poisson functionals and Lions derivative for probability measures, existence and smoothness of density functions for distribution dependent SDEs with Lévy noises are derived.

    Mathematics Subject Classification: Primary: 60H10; Secondary: 60H07.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] V. Barbu and M. Röckner, Probabilistic representation for solutions to non-linear Fokker-Planck equations, SIAM J. Math. Anal., 50 (2018), 4246–4260. doi: 10.1137/17M1162780.
    [2] V. Barbu and M. Röckner, From non-linear Fokker-Planck equations to solutions of distribution dependent SDE, Ann. Probab., 48 (2020), 1902–1920. doi: 10.1214/19-AOP1410.
    [3] J. M. Bismut, Calcul des variations stochastiques et processus de sauts, Z. Wahrsch. Verw. Gebiete, 63 (1983), 147–235. doi: 10.1007/BF00538963.
    [4] W. Brown and K. Hepp, The Vlasov dynamics and its fluctuation in the $1/N$ limit of interacting particles, Commun. Math. Phys., 66 (1977), 101–113.
    [5] R. Buckdahn, J. Li, S. Peng and C. Rainer, Mean-field stochastic differential equations and associated PDEs, Ann. Probab., 45 (2017), 824–878. doi: 10.1214/15-AOP1076.
    [6] P. Cattiaux and L. Mesnager, Hypoelliptic non-homogeneous diffusions, Probab. Theory Related Fields, 123 (2002), 453–483. doi: 10.1007/s004400100194.
    [7] P. Cardaliaguet, Notes on Mean Filed Games, from P. L. Lions' lectures at Collège de France, 2013.
    [8] R. Carmona and F. Delarue, Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics, Ann. Probab., 43 (2015), 2647–2700. doi: 10.1214/14-AOP946.
    [9] D. Crisan and E. McMurray, Smoothing properties of McKean-Vlasov SDEs, Probab. Theory Relat. Fields, 171 (2018), 97–148. doi: 10.1007/s00440-017-0774-0.
    [10] R. Höpfner, E. Löcherbach and M. Thieullen, Strongly degenerate time inhomogeneous SDEs: Densities and support properties. Application to Hodgkin-Huxley type systems, Bernoulli, 23 (2017), 2587–2616. doi: 10.3150/16-BEJ820.
    [11] X. Huang, M. Röckner and F. Y. Wang, Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs, Discrete Contin. Dyn. Syst., 39 (2019), 3017–3035. doi: 10.3934/dcds.2019125.
    [12] X. Huang and Y. Song, Well-posedness and regularity for distribution dependent SPDEs with singular drifts, Nonlinear Anal., 203 (2021), 112167. doi: 10.1016/j.na.2020.112167.
    [13] X. Huang and F. Y. Wang, Distribution dependent SDEs with singular coefficients, Stochastic Process Appl., 129 (2019), 4747–4770. doi: 10.1016/j.spa.2018.12.012.
    [14] H. Kunita, Nondegenerate SDE's with jumps and their hypoelliptic properties, J. Math. Soc. Japan, 65 (2013), 993–1035.
    [15] P. Lions, Cours au Collège de France: Théorie des jeuàchamps moyens, available from: http://www.college-de-france.fr/default/EN/all/equ[1]der/audiovideo.jsp.
    [16] H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equations, Lecture Series in Differential Equations, 7 (1967), 41–57.
    [17] D. Nualart, The Malliavin Calsulus and Related Topics, 2$^nd$ edition, Springer-Verlag, New York, 2006.
    [18] E. Priola and J. Zabczyk, Densities for Ornstein-Uhlenbeck processes with jumps, Bull. Lond. Math. Soc., 41 (2009), 41-50.  doi: 10.1112/blms/bdn099.
    [19] P. Ren and F. Y. Wang, Bismut formula for Lions derivative of distribution dependent SDEs and applications, J. Differ. Equ., 267 (2019), 4745-4777.  doi: 10.1016/j.jde.2019.05.016.
    [20] M. Röckner and X. Zhang, Well-posedness of distribution dependent SDEs with singular drifts, Bernoulli, 27 (2021), 1131-1158. 
    [21] Y. Song, Gradient estimates and exponential ergodicity for mean-field SDEs with jumps, J. Theoret. Probab., 33 (2020), 201-238.  doi: 10.1007/s10959-018-0845-x.
    [22] Y. Song and Y. Xie, Existence of density functions for the running maximum of a Lévy-Itô diffusion, Potential Anal., 48 (2018), 35-48.  doi: 10.1007/s11118-017-9625-y.
    [23] Y. Song and X. Zhang, Regularity of density for SDEs driven by degenrate Lévy noises, Electron. J. Probab., 20 (2015), 1-27.  doi: 10.1214/EJP.v20-3287.
    [24] S. Taniguchi, Applications of Malliavin's calculus to time-dependent systems of heat equations, Osaka J. Math., 22 (1985), 307-320. 
    [25] F. Y. Wang, Distribution dependent SDEs for Landau type equations, Stochastic Process. Appl., 128 (2018), 595-621.  doi: 10.1016/j.spa.2017.05.006.
    [26] X. Zhang, Densities for SDEs driven by degenerate $\alpha$-stable processes, Ann. Probab., 42 (2014), 1885-1910.  doi: 10.1214/13-AOP900.
  • 加载中

Article Metrics

HTML views(198) PDF downloads(207) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint