[1]
|
R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991.
|
[2]
|
F. Brauer, C. C. Carlos and Z. Feng, Mathematical Models in Epidemiology, Springer, New York, 2019.
doi: 10.1007/978-1-4939-9828-9.
|
[3]
|
COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU), Available from: https://www.arcgis.com/apps/opsdashboard/index.html.
|
[4]
|
A. Das, A. Dhar, S. Goyal, A. Kundu and S. Pandey, COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies, Chaos Soliton. Fract., 144 (2021), 110595.
doi: 10.1016/j.chaos.2020.110595.
|
[5]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the defifinition and the computation of the basic reproduction ratio $R_0$, in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[6]
|
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[7]
|
T. Ganyani, C. Kremer, D. Chen, et al., Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020, Euro. Surveill., 25 (2020), 2000257.
|
[8]
|
M. Gatto, E. Bertuzzo, L. Mari and et al., Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures, Proc. Natl. Acad Sci., 117 (2020), 10484-10491.
|
[9]
|
H. Haario, M. Laine, A. Mira and et al., DRAM: efficient adaptive MCMC, Stat. Comput., 16 (2006), 339-354.
doi: 10.1007/s11222-006-9438-0.
|
[10]
|
J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.
|
[11]
|
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.
doi: 10.1090/surv/025.
|
[12]
|
J. K. Hale, SM Verduyn Lunel, Introduction to Functional Differential Equations, Springer, New York, 1993.
doi: 10.1007/978-1-4612-4342-7.
|
[13]
|
Z. Hu, Q. Cui, J. Han, X. Wang, W. E. I. Sha and Z. Teng, Evaluation and prediction of the COVID-19 variations at different input population and quarantine strategies, a case study in Guangdong province, China, Int. J. Infec. Dis., 95 (2020), 231-240.
doi: 10.1002/bimj.202000116.
|
[14]
|
Y. Kuang, Delay Differential Equations with Application to Population Dynamics, Academic Press, an Diego, 1993.
|
[15]
|
A. J. Kucharski, T. W. Russell and C. Diamond et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558.
|
[16]
|
T. Kuniya, Prediction of the epidemic peak of coronavirus disease in Japan, J. Chin. Med., 9 (2020), 789.
|
[17]
|
S. A. Lauer, K. H. Grantz and et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. of Intern. Med., 172 (2020), 577-582.
|
[18]
|
Z. Liu, P. Magal, O. Seydi and G. Webb, A COVID-19 epidemic model with latency period, Infect. Dis. Model., 5 (2020), 323-337.
|
[19]
|
S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196.
doi: 10.1016/j.jtbi.2008.04.011.
|
[20]
|
C. Munayco, A. Tariq and R. Rothenberg, et al., Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th-March 30th, 2020, Infec. Dis. Model., 5 (2020), 338-345.
|
[21]
|
G. A. Muñoz-Fernández, J. M. Seoane and J. B. Seoane-Sepúlveda, A SIR-type model describing the successive waves of COVID-19, Chaos Soliton. Fract., 144 (2021), 110682.
doi: 10.1016/j.chaos.2021.110682.
|
[22]
|
H. L. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1995.
|
[23]
|
H. L. Smith and X. Q. Zhao, Robust persistence for semidynamical systems, Nonlinear Anal., 47 (2001), 6169-6179.
doi: 10.1016/S0362-546X(01)00678-2.
|
[24]
|
B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao and J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov), Infec. Dis. Model., 5 (2020), 248-255.
|
[25]
|
B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao and J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Chin. Med., 9 (2020), 462.
|
[26]
|
R. Verity, L. C. Okell, I. Dorigatti, et al., Estimates of the severity of COVID-19 disease 2019: a model-based analysis, Retour au numéro, 2020.
doi: 10.1016/S1473-3099(20)30243-7.
|
[27]
|
WHO Coronavirus Disease (COVID-19) Dashboard, Available from: https://covid19.who.int/.
|
[28]
|
World Health Organization, Available from: http://www.who.int/.
|
[29]
|
Y. Yan, Y. Chen and K. Liu, et al., Modeling and prediction for the trend of outbreak of NCP based on a time-delay dynamic system, Sci. Sin. Math., 50 (2020), 1-8.
doi: 10.3934/mbe.2020153.
|
[30]
|
Z. Yang, Z. Zeng and K. Wang, et al., Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions, J. Thorac. Dis., 12 (2020), 165-174.
|
[31]
|
J. Zhang, M. Litvinova and W. Wang, et al., Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: a descriptive and modelling study, Lancet Infect. Dis., 20 (2020), 793-802.
doi: 10.3934/mbe.2020173.
|
[32]
|
X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equ., 29 (2017), 67-82.
doi: 10.1007/s10884-015-9425-2.
|