
-
Previous Article
Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D
- CPAA Home
- This Issue
-
Next Article
On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations
The curved symmetric $ 2 $– and $ 3 $–center problem on constant negative surfaces
1. | Department of Mathematics, Shaqra University, Saudi Arabia |
2. | Department of Mathematics, Instituto Tecnológico Autónomo de México, Mexico City, Mexico |
3. | College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing, China |
4. | Chongqing Key Laboratory of Social Economy and Applied Statistics, Chongqing, China |
We study the motion of the negative curved symmetric two and three center problem on the Poincaré upper semi plane model for a surface of constant negative curvature $ \kappa $, which without loss of generality we assume $ \kappa = -1 $. Using this model, we first derive the equations of motion for the $ 2 $-and $ 3 $-center problems. We prove that for $ 2 $–center problem, there exists a unique equilibrium point and we study the dynamics around it. For the motion restricted to the invariant $ y $–axis, we prove that it is a center, but for the general two center problem it is unstable. For the $ 3 $–center problem, we show the non-existence of equilibrium points. We study two particular integrable cases, first when the motion of the free particle is restricted to the $ y $–axis, and second when all particles are along the same geodesic. We classify the singularities of the problem and introduce a local and a global regularization of all them. We show some numerical simulations for each situation.
References:
[1] |
S. Alhowaity, F. Diacu and E. Pérez-Chavela,
Relative equilibria in curved restricted 4-body problems, Can. Math. Bull., 61 (2018), 673-687.
doi: 10.4153/CMB-2018-019-9. |
[2] |
J. Andrade, N. Dávila, E. Pérez-Chavela and C. Vidal,
Dynamics and Regularization of the Kepler Problem on Surfaces of Constant Curvature, Can. J. Math., 69 (2017), 961-991.
doi: 10.4153/CJM-2016-014-5. |
[3] |
S. V. Bolotin and P. Negrini, Chaotic behavior in the 3-center problem, J. Differ. Equ., 190 (2003), 539-558.
doi: 10.1016/S0022-0396(03)00024-X. |
[4] |
W. Bolyai and J. Bolyai, Geometrische Untersuchungen, Teubner, Leipzig-Berlin, 1913. |
[5] |
F. Diacu,
On the singularities of the curved $N$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.
doi: 10.1090/S0002-9947-2010-05251-1. |
[6] |
F. Diacu, Relative equilibria of the curved $N$-body problem, in ![]() ![]() ![]() |
[7] |
F. Diacu, Relative equilibria of the 3-dimensional curved $n$-body problem, Memoirs Amer. Math. Soc., 228 (2013), 1071. |
[8] |
F. Diacu,
The curved $N$-body problem: risks and rewards, Math. Intell., 35 (2013), 24-33.
doi: 10.1007/s00283-013-9397-1. |
[9] |
F. Diacu and S. Kordlou,
Rotopulsators of the curved $N$-body problem, J. Differ. Equ., 255 (2013), 2709-2750.
doi: 10.1016/j.jde.2013.07.009. |
[10] |
F. Diacu, R. Martínez, E. Pérez-Chavela and C. Simó,
On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Physica D, 256 (2013), 21-35.
doi: 10.1016/j.physd.2013.04.007. |
[11] |
F. Diacu and E. Pérez-Chavela,
Homographic solutions of the curved $3$-body problem, J. Differ. Equ., 250 (2011), 340-366.
doi: 10.1016/j.jde.2010.08.011. |
[12] |
F. Diacu, E. Pérez-Chavela and M. Santoprete,
Saari's conjecture for the collinear $N$-body problem, Trans. Amer. Math. Soc., 357 (2005), 4215-4223.
doi: 10.1090/S0002-9947-04-03606-2. |
[13] |
F. Diacu, E. Pérez-Chavela and M. Santoprete,
The $N$-body problem in spaces of constant curvature. Part I: Relative equilibria, J. Nonlinear Sci., 22 (2012), 247-266.
doi: 10.1007/s00332-011-9116-z. |
[14] |
F. Diacu, E. Pérez-Chavela and M. Santoprete,
The $N$-body problem in spaces of constant curvature. Part II: Singularities, J. Nonlinear Sci., 22 (2012), 267-275.
doi: 10.1007/s00332-011-9117-y. |
[15] |
F. Diacu, E. Pérez-Chavela and G. Reyes Victoria,
An intrinsic approach in the curved $N$-body problem. The negative curvature case, J. Differ. Equ., 252 (2012), 4529-4562.
doi: 10.1016/j.jde.2012.01.002. |
[16] |
F. Diacu and §. Popa, All Lagrangian relative equilibria have equal masses, J. Math. Phys., 55 (2014), 112701.
doi: 10.1063/1.4900833. |
[17] |
F. Diacu and B. Thorn,
Rectangular orbits of the curved 4-body problem, Proc. Amer. Math. Soc., 143 (2015), 1583-1593.
doi: 10.1090/S0002-9939-2014-12326-4. |
[18] |
L. C. García-Naranjo, J. C. Marrero, E. Pérez-Chavela and M. Rodríguez-Olmos,
Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differ. Equ., 260 (2016), 6375-6404.
doi: 10.1016/j.jde.2015.12.044. |
[19] |
W. Killing,
Die Rechnung in den nichteuklidischen Raumformen, J. Reine Angew. Math., 89 (1880), 265-287.
doi: 10.1515/crll.1880.89.265. |
[20] |
W. Killing,
Die Mechanik in den nichteuklidischen Raumformen, J. Reine Angew. Math., 98 (1885), 1-48.
doi: 10.1515/crll.1885.98.1. |
[21] |
W. Killing, Die Nicht-Euklidischen Raumformen in Analytischer Behandlung, Teubner, Leipzig, 1885. |
[22] |
V.V. Kozlov and A. O. Harin,
Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 54 (1992), 393-399.
doi: 10.1007/BF00049149. |
[23] |
H. Kragh,
Is space Flat? Nineteenth century astronomy and non-Euclidean geometry, J. Astr. Hist. Heritage, 15 (2012), 149-158.
|
[24] |
R. Lipschitz,
Extension of the planet-problem to a space of $n$ dimensions and constant integral curvature, Quart. J. Pure Appl. Math., 12 (1873), 349-370.
|
[25] |
N. I. Lobachevsky, The new foundations of geometry with full theory of parallels [in Russian], 1835-1838, in Collected Works, vol. 2, GITTL, Moscow, 1949. |
[26] |
R. Martínez and C. Simó, On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb S^2$, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013) 1157–1175.
doi: 10.3934/dcds. 2013.33.1157. |
[27] |
R. Martínez and C. Simó,
Relative equilibria of the restricted 3-body problem in curved spaces, Celes.t Mech. Dyn. Ast.r, 128 (2017), 221-259.
doi: 10.1007/s10569-016-9750-8. |
[28] |
E. Pérez-Chavela and J. G. Reyes Victoria,
An intrinsic approach in the curved $N$-body problem. The positive curvature case, Trans. Amer. Math. Soc., 364 (2012), 3805-3827.
doi: 10.1090/S0002-9947-2012-05563-2. |
[29] |
E. Schering, Die Schwerkraft im Gaussischen Räume, Nachr. Königl. Ges. Wiss. Gött., 15, (1870), 311–321. |
[30] |
E. Schering, Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Räumen, Nachr. Königl. Ges. Wiss. Gött., 6 (1873), 149–159. |
[31] |
A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A: Math. Gen., 39, (2006), 5787-5806; corrected version at math. DS/0601382.
doi: 10.1088/0305-4470/39/20/011. |
[32] |
P. Tibboel,
Polygonal homographic orbits in spaces of constant curvature, Proc. Amer. Math. Soc., 141 (2013), 1465-1471.
doi: 10.1090/S0002-9939-2012-11410-8. |
[33] |
P. Tibboel,
Existence of a class of rotopulsators, J. Math. Anal. Appl., 404 (2013), 185-191.
doi: 10.1016/j.jmaa.2013.02.066. |
[34] |
P. Tibboel,
Existence of a lower bound for the distance between point masses of relative equilibria in spaces of constant curvature, J. Math. Anal. Appl., 416 (2014), 205-211.
doi: 10.1016/j.jmaa.2014.02.036. |
[35] |
T. Vozmischeva, Integrable problems of celestial mechanics in spaces of constant curvature, in Astrophysics and Space Science Library, Volume 295, Springer, 2003.
doi: 10.1007/978-94-017-0303-1. |
[36] |
S. Zhu,
Eulerian relative equilibria of the curved 3-body problems in $\mathbb S^2$, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.
doi: 10.1090/S0002-9939-2014-11995-2. |
show all references
References:
[1] |
S. Alhowaity, F. Diacu and E. Pérez-Chavela,
Relative equilibria in curved restricted 4-body problems, Can. Math. Bull., 61 (2018), 673-687.
doi: 10.4153/CMB-2018-019-9. |
[2] |
J. Andrade, N. Dávila, E. Pérez-Chavela and C. Vidal,
Dynamics and Regularization of the Kepler Problem on Surfaces of Constant Curvature, Can. J. Math., 69 (2017), 961-991.
doi: 10.4153/CJM-2016-014-5. |
[3] |
S. V. Bolotin and P. Negrini, Chaotic behavior in the 3-center problem, J. Differ. Equ., 190 (2003), 539-558.
doi: 10.1016/S0022-0396(03)00024-X. |
[4] |
W. Bolyai and J. Bolyai, Geometrische Untersuchungen, Teubner, Leipzig-Berlin, 1913. |
[5] |
F. Diacu,
On the singularities of the curved $N$-body problem, Trans. Amer. Math. Soc., 363 (2011), 2249-2264.
doi: 10.1090/S0002-9947-2010-05251-1. |
[6] |
F. Diacu, Relative equilibria of the curved $N$-body problem, in ![]() ![]() ![]() |
[7] |
F. Diacu, Relative equilibria of the 3-dimensional curved $n$-body problem, Memoirs Amer. Math. Soc., 228 (2013), 1071. |
[8] |
F. Diacu,
The curved $N$-body problem: risks and rewards, Math. Intell., 35 (2013), 24-33.
doi: 10.1007/s00283-013-9397-1. |
[9] |
F. Diacu and S. Kordlou,
Rotopulsators of the curved $N$-body problem, J. Differ. Equ., 255 (2013), 2709-2750.
doi: 10.1016/j.jde.2013.07.009. |
[10] |
F. Diacu, R. Martínez, E. Pérez-Chavela and C. Simó,
On the stability of tetrahedral relative equilibria in the positively curved 4-body problem, Physica D, 256 (2013), 21-35.
doi: 10.1016/j.physd.2013.04.007. |
[11] |
F. Diacu and E. Pérez-Chavela,
Homographic solutions of the curved $3$-body problem, J. Differ. Equ., 250 (2011), 340-366.
doi: 10.1016/j.jde.2010.08.011. |
[12] |
F. Diacu, E. Pérez-Chavela and M. Santoprete,
Saari's conjecture for the collinear $N$-body problem, Trans. Amer. Math. Soc., 357 (2005), 4215-4223.
doi: 10.1090/S0002-9947-04-03606-2. |
[13] |
F. Diacu, E. Pérez-Chavela and M. Santoprete,
The $N$-body problem in spaces of constant curvature. Part I: Relative equilibria, J. Nonlinear Sci., 22 (2012), 247-266.
doi: 10.1007/s00332-011-9116-z. |
[14] |
F. Diacu, E. Pérez-Chavela and M. Santoprete,
The $N$-body problem in spaces of constant curvature. Part II: Singularities, J. Nonlinear Sci., 22 (2012), 267-275.
doi: 10.1007/s00332-011-9117-y. |
[15] |
F. Diacu, E. Pérez-Chavela and G. Reyes Victoria,
An intrinsic approach in the curved $N$-body problem. The negative curvature case, J. Differ. Equ., 252 (2012), 4529-4562.
doi: 10.1016/j.jde.2012.01.002. |
[16] |
F. Diacu and §. Popa, All Lagrangian relative equilibria have equal masses, J. Math. Phys., 55 (2014), 112701.
doi: 10.1063/1.4900833. |
[17] |
F. Diacu and B. Thorn,
Rectangular orbits of the curved 4-body problem, Proc. Amer. Math. Soc., 143 (2015), 1583-1593.
doi: 10.1090/S0002-9939-2014-12326-4. |
[18] |
L. C. García-Naranjo, J. C. Marrero, E. Pérez-Chavela and M. Rodríguez-Olmos,
Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differ. Equ., 260 (2016), 6375-6404.
doi: 10.1016/j.jde.2015.12.044. |
[19] |
W. Killing,
Die Rechnung in den nichteuklidischen Raumformen, J. Reine Angew. Math., 89 (1880), 265-287.
doi: 10.1515/crll.1880.89.265. |
[20] |
W. Killing,
Die Mechanik in den nichteuklidischen Raumformen, J. Reine Angew. Math., 98 (1885), 1-48.
doi: 10.1515/crll.1885.98.1. |
[21] |
W. Killing, Die Nicht-Euklidischen Raumformen in Analytischer Behandlung, Teubner, Leipzig, 1885. |
[22] |
V.V. Kozlov and A. O. Harin,
Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom, 54 (1992), 393-399.
doi: 10.1007/BF00049149. |
[23] |
H. Kragh,
Is space Flat? Nineteenth century astronomy and non-Euclidean geometry, J. Astr. Hist. Heritage, 15 (2012), 149-158.
|
[24] |
R. Lipschitz,
Extension of the planet-problem to a space of $n$ dimensions and constant integral curvature, Quart. J. Pure Appl. Math., 12 (1873), 349-370.
|
[25] |
N. I. Lobachevsky, The new foundations of geometry with full theory of parallels [in Russian], 1835-1838, in Collected Works, vol. 2, GITTL, Moscow, 1949. |
[26] |
R. Martínez and C. Simó, On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb S^2$, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013) 1157–1175.
doi: 10.3934/dcds. 2013.33.1157. |
[27] |
R. Martínez and C. Simó,
Relative equilibria of the restricted 3-body problem in curved spaces, Celes.t Mech. Dyn. Ast.r, 128 (2017), 221-259.
doi: 10.1007/s10569-016-9750-8. |
[28] |
E. Pérez-Chavela and J. G. Reyes Victoria,
An intrinsic approach in the curved $N$-body problem. The positive curvature case, Trans. Amer. Math. Soc., 364 (2012), 3805-3827.
doi: 10.1090/S0002-9947-2012-05563-2. |
[29] |
E. Schering, Die Schwerkraft im Gaussischen Räume, Nachr. Königl. Ges. Wiss. Gött., 15, (1870), 311–321. |
[30] |
E. Schering, Die Schwerkraft in mehrfach ausgedehnten Gaussischen und Riemmanschen Räumen, Nachr. Königl. Ges. Wiss. Gött., 6 (1873), 149–159. |
[31] |
A. V. Shchepetilov, Nonintegrability of the two-body problem in constant curvature spaces, J. Phys. A: Math. Gen., 39, (2006), 5787-5806; corrected version at math. DS/0601382.
doi: 10.1088/0305-4470/39/20/011. |
[32] |
P. Tibboel,
Polygonal homographic orbits in spaces of constant curvature, Proc. Amer. Math. Soc., 141 (2013), 1465-1471.
doi: 10.1090/S0002-9939-2012-11410-8. |
[33] |
P. Tibboel,
Existence of a class of rotopulsators, J. Math. Anal. Appl., 404 (2013), 185-191.
doi: 10.1016/j.jmaa.2013.02.066. |
[34] |
P. Tibboel,
Existence of a lower bound for the distance between point masses of relative equilibria in spaces of constant curvature, J. Math. Anal. Appl., 416 (2014), 205-211.
doi: 10.1016/j.jmaa.2014.02.036. |
[35] |
T. Vozmischeva, Integrable problems of celestial mechanics in spaces of constant curvature, in Astrophysics and Space Science Library, Volume 295, Springer, 2003.
doi: 10.1007/978-94-017-0303-1. |
[36] |
S. Zhu,
Eulerian relative equilibria of the curved 3-body problems in $\mathbb S^2$, Proc. Amer. Math. Soc., 142 (2014), 2837-2848.
doi: 10.1090/S0002-9939-2014-11995-2. |








[1] |
Sanjiban Santra. On the positive solutions for a perturbed negative exponent problem on $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1441-1460. doi: 10.3934/dcds.2018059 |
[2] |
Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011 |
[3] |
Peili Li, Xiliang Lu, Yunhai Xiao. Smoothing Newton method for $ \ell^0 $-$ \ell^2 $ regularized linear inverse problem. Inverse Problems and Imaging, 2022, 16 (1) : 153-177. doi: 10.3934/ipi.2021044 |
[4] |
Genni Fragnelli, Jerome A. Goldstein, Rosa Maria Mininni, Silvia Romanelli. Operators of order 2$ n $ with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3417-3426. doi: 10.3934/dcdss.2020128 |
[5] |
Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033 |
[6] |
Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067 |
[7] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[8] |
Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129 |
[9] |
Kailu Yang, Xiaomiao Wang, Menglong Zhang, Lidong Wang. Some progress on optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021012 |
[10] |
Zijun Chen, Shengkun Wu. Local well-posedness for the Zakharov system in dimension $ d = 2, 3 $. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4307-4319. doi: 10.3934/cpaa.2021161 |
[11] |
Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079 |
[12] |
Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135 |
[13] |
Jin-Yun Guo, Cong Xiao, Xiaojian Lu. On $ n $-slice algebras and related algebras. Electronic Research Archive, 2021, 29 (4) : 2687-2718. doi: 10.3934/era.2021009 |
[14] |
Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021 |
[15] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[16] |
Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062 |
[17] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[18] |
Sascha Kurz, Ivan Landjev, Assia Rousseva. Classification of $ \mathbf{(3 \!\mod 5)} $ arcs in $ \mathbf{ \operatorname{PG}(3,5)} $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021066 |
[19] |
Tian-Xiao He, Peter J.-S. Shiue. Identities for linear recursive sequences of order $ 2 $. Electronic Research Archive, 2021, 29 (5) : 3489-3507. doi: 10.3934/era.2021049 |
[20] |
Liu Liu, Justyna Jarczyk, Witold Jarczyk, Weinian Zhang. Iterative roots of type $ \mathcal {T}_2 $. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022082 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]