The local well-posedness problem for the Maxwell-Klein-Gordon system in Coulomb gauge as well as Lorenz gauge is treated in two space dimensions for data with minimal regularity assumptions. In the classical case of data in $ L^2 $-based Sobolev spaces $ H^s $ and $ H^l $ for the electromagnetic field $ \phi $ and the potential $ A $, respectively, the minimal regularity assumptions are $ s > \frac{1}{2} $ and $ l > \frac{1}{4} $, which leaves a gap of $ \frac{1}{2} $ and $ \frac{1}{4} $ to the critical regularity with respect to scaling $ s_c = l_c = 0 $. This gap can be reduced for data in Fourier-Lebesgue spaces $ \widehat{H}^{s, r} $ and $ \widehat{H}^{l, r} $ to $ s> \frac{21}{16} $ and $ l > \frac{9}{8} $ for $ r $ close to $ 1 $, whereas the critical exponents with respect to scaling fulfill $ s_c \to 1 $, $ l_c \to 1 $ as $ r \to 1 $. Here $ \|f\|_{\widehat{H}^{s, r}} : = \| \langle \xi \rangle^s \tilde{f}\|_{L^{r'}_{\tau \xi}} \, , \, 1 < r \le 2 \, , \, \frac{1}{r}+\frac{1}{r'} = 1 \, . $ Thus the gap is reduced for $ \phi $ as well as $ A $ in both gauges.
| Citation: |
| [1] |
P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions, Contemp. Math., 526 (2010), 125-150.
doi: 10.1090/conm/526/10379.
|
| [2] |
P. d'Ancona, D. Foschi and S. Selberg, Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system, J. EMS, 9 (2007), 877-898.
doi: 10.4171/JEMS/100.
|
| [3] |
S. Cuccagna, On the local existence for the Maxwell-Klein-Gordon system in $\mathbb{R}^{3+1}$, Commun. Partial Differ. Equ., 24 (1999), 851-867.
doi: 10.1080/03605309908821449.
|
| [4] |
M. Czubak and N. Pikula, Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge., Commun. Pure Appl. Anal., 13 (2014), 1669-1683.
doi: 10.3934/cpaa.2014.13.1669.
|
| [5] |
D. Foschi and S. Klainerman, Bilinear space-time estimates for homogeneous wave equations., Ann. Sc. ENS., 33 (2000), 211-274.
doi: 10.1016/S0012-9593(00)00109-9.
|
| [6] |
V. Grigoryan and A. Nahmod, Almost critical well-posedness for nonlinear wave equation with $Q_{\mu \nu}$ null forms in 2D., Math. Res. Lett., 21 (2014), 313-332.
doi: 10.4310/MRL.2014.v21.n2.a9.
|
| [7] |
V. Grigoryan and A. Tanguay, Improved well-posedness for the quadratic derivative nonlinear wave equation in 2D, J. Math. Anal. Appl., 475 (2019), 1578-1595.
doi: 10.1016/j.jmaa.2019.03.032.
|
| [8] |
A. Grünrock, An improved local well-posedness result for the modified KdV equation., Int. Math. Res. Not., 61 (2004), 3287-3308.
doi: 10.1155/S1073792804140981.
|
| [9] |
A. Grünrock, On the wave equation with quadratic nonlinearities in three space dimensions., Hyperbolic Differ. Equ., 8 (2011), 1-8.
doi: 10.1142/S0219891611002305.
|
| [10] |
A. Grünrock and L. Vega, Local well-posedness for the modified KdV equation in almost critical $\hat{H}^r_s$ -spaces., Trans. Amer. Mat. Soc., 361 (2009), 5681-5694.
doi: 10.1090/S0002-9947-09-04611-X.
|
| [11] |
M. Keel, T. Roy and T. Tao, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm, Discrete Cont. Dyn. Syst., 30 (2011), 573-621.
doi: 10.3934/dcds.2011.30.573.
|
| [12] |
S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74 (1994), 19-44.
doi: 10.1215/S0012-7094-94-07402-4.
|
| [13] |
S. Klainerman and S. Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math., 4 (2002), 223-295.
doi: 10.1142/S0219199702000634.
|
| [14] |
M. Machedon and J. Sterbenz, Almost optimal local well-posedness for the (3+1)- dimensional Maxwell-Klein-Gordon equations, J. AMS, 17 (2004), 297-359.
doi: 10.1090/S0894-0347-03-00445-4.
|
| [15] |
H. Pecher, Low regularity local well-posedness for the Maxwell-Klein-Gordon equations in Lorenz gauge, Adv. Differ. Equ., 19 (2014), 359-386.
|
| [16] |
H. Pecher, Almost optimal local well-posedness for the Maxwell-Klein-Gordon system in Fourier-Lebesgue spaces, Commun. Pure Appl. Anal., 19 (2020), 3303-3321.
doi: 10.3934/cpaa.2020146.
|
| [17] |
S. Selberg, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in 1+4 dimensions, Commun. Partial Differ. Equ., 27 (2002), 1183-1227.
doi: 10.1081/PDE-120004899.
|
| [18] |
S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Commun. Partial Differ. Equ., 35 (2010), 1029-1057.
doi: 10.1080/03605301003717100.
|
| [19] |
T. Tao, Multilinear weighted convolutions of $L^2$-functions, and applications to non-linear dispersive equations, Amer. J. Math., 123 (2001), 839-908.
|