doi: 10.3934/cpaa.2021093
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Data-driven optimal control of a seir model for COVID-19

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, USA

2. 

Department of Mathematics, Iowa State University, Ames, IA 50011, USA

* Corresponding author

Received  December 2020 Revised  April 2021 Early access June 2021

Fund Project: This research was supported by the National Science Foundation under Grant DMS1812666

We present a data-driven optimal control approach which integrates the reported partial data with the epidemic dynamics for COVID-19. We use a basic Susceptible-Exposed-Infectious-Recovered (SEIR) model, the model parameters are time-varying and learned from the data. This approach serves to forecast the evolution of the outbreak over a relatively short time period and provide scheduled controls of the epidemic. We provide efficient numerical algorithms based on a generalized Pontryagin's Maximum Principle associated with the optimal control theory. Numerical experiments demonstrate the effective performance of the proposed model and its numerical approximations.

Citation: Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, doi: 10.3934/cpaa.2021093
References:
[1]

V. V. Aleksandrov, On the accumulation of perturbations in the linear systems with two coordinates, Vestnik MGU, 3.

[2]

L. J. S. Allen, An introduction to stochastic epidemic models, in Mathematical Epidemiology, vol. 1945, Springer, Berlin, 2008, doi: 10.1007/978-3-540-78911-6_3.

[3]

C. AnastassopoulouL. RussoA. Tsakris and C. Siettos, Data-based analysis, modelling and forecasting of the COVID-19 outbreak, PLOS ONE, 15 (2020), 1-21. 

[4]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367. 

[5]

S. Arik, C. L. Li, J. Yoon, R. Sinha, A. Epshteyn, L. T. Le, V. Menon, S. Singh, L. Zhang, M. Nikoltchev, Y. K. Sonthalia, H. Nakhost, E. Kanal and T. Pfister, Interpretable sequence learning for covid-19 forecasting, arXiv: 2008.00646.

[6]

C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games, Proc. Natl. Acad. Sci. USA, 101 (2004), 13391-13394.  doi: 10.1073/pnas.0403823101.

[7]

H. Behncke, Optimal control of deterministic epidemics, Optim. Contr. Appl. Met., 21 (2000), 269-285.  doi: 10.1002/oca.678.

[8]

H. Berestycki, J. M. Roquejoffre and L. Rossi, Propagation of epidemics along lines with fast diffusion, arXiv: 2005.01859.

[9]

A. BertozziE. FrancoG. MohlerM. Short and D. Sledge, The challenges of modeling and forecasting the spread of COVID-19, P. Natl. Acad. Sci., 117 (2020), 16732-16738. 

[10]

M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in u.s. cities, P. Natl. Acad. Sci., 104 (2007), 7588-7593. 

[11]

A. Bressan and B. Piccoli, Introduction to the mathematical theory of control, in AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.

[12]

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1.

[13]

V. Capasso, Reaction-diffusion models for the spread of a class of infectious diseases, in Proceedings of the Second European Symposium on Mathematics in Industry (Oberwolfach, 1987), vol. 3 of European Consort. Math. Indust., Teubner, Stuttgart, 1988, doi: 10.1007/978-94-009-2979-1_11.

[14]

F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732.  doi: 10.1016/j.jtbi.2007.04.003.

[15]

S. L. ChangM. PiraveenanP. Pattison and M. Prokopenko, Game theoretic modelling of infectious disease dynamics and intervention methods: a review, J. Biol. Dyn., 14 (2020), 57-89.  doi: 10.1080/17513758.2020.1720322.

[16]

R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, in Conference on Neural Information Processing Systems (NIPS), 2018.

[17]

F. L. Chernous and A. A. Lyubushin, Method of successive approximations for solution of optimal control problems, Optimal Control Appl. Methods, 3 (1982), 101-114.  doi: 10.1002/oca.4660030201.

[18]

M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel and S. Ho, Lagrangian neural networks, arXiv: 2003.04630.

[19]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[20]

O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases, in Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2000

[21]

W. E, A proposal on machine learning via dynamical systems, Math. Sci., 5 (2017), 1-11.  doi: 10.1007/s40304-017-0103-z.

[22]

G. GiordanoF. BlanchiniR. BrunoP. ColaneriA. FilippoA. Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in italy, Nature Med., 26 (2020), 1-6. 

[23]

D. Greenhalgh, Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity, Math. Comput. Model., 25 (1997), 85-107.  doi: 10.1016/S0895-7177(97)00009-5.

[24]

D. Greenhalgh and R. Das, Modeling epidemics with variable contact rates, Theor. Population Biol., 47 (1995), 129-179. 

[25]

S. Greydanus, M. Dzamba and J. Yosinski, Hamiltonian neural networks, arXiv: 1906.01563.

[26]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966.

[27]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.

[28]

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735-1780. 

[29]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5 (1995), 935-966.  doi: 10.1142/S0218202595000504.

[30]

E. HunterB. Mac Namee and J. Kelleher, An open-data-driven agent-based model to simulate infectious disease outbreaks, PLOS ONE, 13 (2018), 1-35. 

[31]

M. M. Tiberiu Harko Francisco S.N. Lobo, Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Appl. Math. Comput., 236 (2014), 184-194.  doi: 10.1016/j.amc.2014.03.030.

[32]

J. JangH. Kwon and J. Lee, Optimal control problem of an SIR reaction-diffusion model with inequality constraints, Math. Comput. Simul., 171 (2020), 136-151.  doi: 10.1016/j.matcom.2019.08.002.

[33]

H. Jo, H. Son, H. J. Hwang and S. Y. Jung, Analysis of COVID-19 spread in {South Korea} using the SIR model with time-dependent parameters and deep learning, medRxiv.

[34]

M. Keeling and K. Eames, Networks and epidemic models, J. Roy. Soc. Interface, 2 (2005), 295-307. 

[35]

D. G. Kendall, Mathematical models of the spread of infection, Math. Comput. Sci. Biol. Med., 171 (1965), 213-225. 

[36]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, P. Roy. Soc. Lond. A, 115(772) (1927), 700-721. 

[37]

A. Kleczkowski and B. T. Grenfell, Mean-field-type equations for spread of epidemics: The 'small world' model, Physica A, 274 (1999), 355-360. 

[38]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.  doi: 10.1007/s11538-008-9352-z.

[39]

I. A. Krylov and F. L. Černous' ko, The method of successive approximations for solving optimal control problems, Ž. Vyčisl. Mat i Mat. Fiz., 2 (1962), 1132-1139.

[40]

W. Lee, S. Liu, H. Tembine, W. Li and S. Osher, Controlling propagation of epidemics via mean-field games, arXiv: 2006.01249.

[41]

M. Y. LiJ. R. GraefL. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.  doi: 10.1016/S0025-5564(99)00030-9.

[42]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164.  doi: 10.1016/0025-5564(95)92756-5.

[43]

Q. LinS. ZhaoD. GaoY. LouS. YangS. MusaM. WangW. WangL. Yang and D. He, A conceptual model for the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis., 93 (2020), 211-216. 

[44]

H. Liu and P. Markowich, Selection dynamics for deep neural networks, J. Differ. Equ., 269 (2020), 11540-11574.  doi: 10.1016/j.jde.2020.08.041.

[45]

W. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.

[46]

M. Lutter, C. Ritter and J. Peters, Deep lagrangian networks: Using physics as model prior for deep learning, arXiv: 1907.04490.

[47]

L. Magri and N. A. K. Doan, First-principles machine learning modelling of COVID-19, arXiv: 2004.09478.

[48]

J. Mena-Lorcat and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), 693-716.  doi: 10.1007/BF00173264.

[49]

R. Parshani, S. Carmi and S. Havlin, Epidemic threshold for the susceptible-infectious-susceptible model on random networks, Phys. Rev. Lett., 104 (2010), 258701.

[50] L. PontryaginV. BoltyanskiiR. Gamkrelidze and E. Mishchenko, The Mathematical Theory of Optimal Processes, CRC Press, 1962. 
[51]

M. RaissiP. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686-707.  doi: 10.1016/j.jcp.2018.10.045.

[52]

T. C. Reluga and A. P. Galvani, A general approach for population games with application to vaccination, Math. Biosci., 230 (2011), 67-78.  doi: 10.1016/j.mbs.2011.01.003.

[53]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.

[54]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations, in Large-Scale Scientific Computing, vol. 3743 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006, doi: 10.1007/11666806_28.

[55]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286-2291.  doi: 10.1016/j.camwa.2010.08.020.

[56]

H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.  doi: 10.1016/0025-5564(92)90081-7.

[57]

D. J. Watts, Small worlds, in Princeton Studies in Complexity, Princeton University Press, Princeton, NJ, 1999,

[58]

S. H. WhiteA. M. del Rey and G. R. Sánchez, Modeling epidemics using cellular automata, Appl. Math. Comput., 186 (2007), 193-202.  doi: 10.1016/j.amc.2006.06.126.

show all references

References:
[1]

V. V. Aleksandrov, On the accumulation of perturbations in the linear systems with two coordinates, Vestnik MGU, 3.

[2]

L. J. S. Allen, An introduction to stochastic epidemic models, in Mathematical Epidemiology, vol. 1945, Springer, Berlin, 2008, doi: 10.1007/978-3-540-78911-6_3.

[3]

C. AnastassopoulouL. RussoA. Tsakris and C. Siettos, Data-based analysis, modelling and forecasting of the COVID-19 outbreak, PLOS ONE, 15 (2020), 1-21. 

[4]

R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367. 

[5]

S. Arik, C. L. Li, J. Yoon, R. Sinha, A. Epshteyn, L. T. Le, V. Menon, S. Singh, L. Zhang, M. Nikoltchev, Y. K. Sonthalia, H. Nakhost, E. Kanal and T. Pfister, Interpretable sequence learning for covid-19 forecasting, arXiv: 2008.00646.

[6]

C. T. Bauch and D. J. D. Earn, Vaccination and the theory of games, Proc. Natl. Acad. Sci. USA, 101 (2004), 13391-13394.  doi: 10.1073/pnas.0403823101.

[7]

H. Behncke, Optimal control of deterministic epidemics, Optim. Contr. Appl. Met., 21 (2000), 269-285.  doi: 10.1002/oca.678.

[8]

H. Berestycki, J. M. Roquejoffre and L. Rossi, Propagation of epidemics along lines with fast diffusion, arXiv: 2005.01859.

[9]

A. BertozziE. FrancoG. MohlerM. Short and D. Sledge, The challenges of modeling and forecasting the spread of COVID-19, P. Natl. Acad. Sci., 117 (2020), 16732-16738. 

[10]

M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in u.s. cities, P. Natl. Acad. Sci., 104 (2007), 7588-7593. 

[11]

A. Bressan and B. Piccoli, Introduction to the mathematical theory of control, in AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007.

[12]

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4757-3516-1.

[13]

V. Capasso, Reaction-diffusion models for the spread of a class of infectious diseases, in Proceedings of the Second European Symposium on Mathematics in Industry (Oberwolfach, 1987), vol. 3 of European Consort. Math. Indust., Teubner, Stuttgart, 1988, doi: 10.1007/978-94-009-2979-1_11.

[14]

F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732.  doi: 10.1016/j.jtbi.2007.04.003.

[15]

S. L. ChangM. PiraveenanP. Pattison and M. Prokopenko, Game theoretic modelling of infectious disease dynamics and intervention methods: a review, J. Biol. Dyn., 14 (2020), 57-89.  doi: 10.1080/17513758.2020.1720322.

[16]

R. T. Q. Chen, Y. Rubanova, J. Bettencourt and D. K. Duvenaud, Neural ordinary differential equations, in Conference on Neural Information Processing Systems (NIPS), 2018.

[17]

F. L. Chernous and A. A. Lyubushin, Method of successive approximations for solution of optimal control problems, Optimal Control Appl. Methods, 3 (1982), 101-114.  doi: 10.1002/oca.4660030201.

[18]

M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel and S. Ho, Lagrangian neural networks, arXiv: 2003.04630.

[19]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6.

[20]

O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases, in Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2000

[21]

W. E, A proposal on machine learning via dynamical systems, Math. Sci., 5 (2017), 1-11.  doi: 10.1007/s40304-017-0103-z.

[22]

G. GiordanoF. BlanchiniR. BrunoP. ColaneriA. FilippoA. Matteo and M. Colaneri, Modelling the COVID-19 epidemic and implementation of population-wide interventions in italy, Nature Med., 26 (2020), 1-6. 

[23]

D. Greenhalgh, Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity, Math. Comput. Model., 25 (1997), 85-107.  doi: 10.1016/S0895-7177(97)00009-5.

[24]

D. Greenhalgh and R. Das, Modeling epidemics with variable contact rates, Theor. Population Biol., 47 (1995), 129-179. 

[25]

S. Greydanus, M. Dzamba and J. Yosinski, Hamiltonian neural networks, arXiv: 1906.01563.

[26]

M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966.

[27]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.

[28]

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735-1780. 

[29]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models Methods Appl. Sci., 5 (1995), 935-966.  doi: 10.1142/S0218202595000504.

[30]

E. HunterB. Mac Namee and J. Kelleher, An open-data-driven agent-based model to simulate infectious disease outbreaks, PLOS ONE, 13 (2018), 1-35. 

[31]

M. M. Tiberiu Harko Francisco S.N. Lobo, Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Appl. Math. Comput., 236 (2014), 184-194.  doi: 10.1016/j.amc.2014.03.030.

[32]

J. JangH. Kwon and J. Lee, Optimal control problem of an SIR reaction-diffusion model with inequality constraints, Math. Comput. Simul., 171 (2020), 136-151.  doi: 10.1016/j.matcom.2019.08.002.

[33]

H. Jo, H. Son, H. J. Hwang and S. Y. Jung, Analysis of COVID-19 spread in {South Korea} using the SIR model with time-dependent parameters and deep learning, medRxiv.

[34]

M. Keeling and K. Eames, Networks and epidemic models, J. Roy. Soc. Interface, 2 (2005), 295-307. 

[35]

D. G. Kendall, Mathematical models of the spread of infection, Math. Comput. Sci. Biol. Med., 171 (1965), 213-225. 

[36]

W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, P. Roy. Soc. Lond. A, 115(772) (1927), 700-721. 

[37]

A. Kleczkowski and B. T. Grenfell, Mean-field-type equations for spread of epidemics: The 'small world' model, Physica A, 274 (1999), 355-360. 

[38]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages, Bull. Math. Biol., 71 (2009), 75-83.  doi: 10.1007/s11538-008-9352-z.

[39]

I. A. Krylov and F. L. Černous' ko, The method of successive approximations for solving optimal control problems, Ž. Vyčisl. Mat i Mat. Fiz., 2 (1962), 1132-1139.

[40]

W. Lee, S. Liu, H. Tembine, W. Li and S. Osher, Controlling propagation of epidemics via mean-field games, arXiv: 2006.01249.

[41]

M. Y. LiJ. R. GraefL. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size, Math. Biosci., 160 (1999), 191-213.  doi: 10.1016/S0025-5564(99)00030-9.

[42]

M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155-164.  doi: 10.1016/0025-5564(95)92756-5.

[43]

Q. LinS. ZhaoD. GaoY. LouS. YangS. MusaM. WangW. WangL. Yang and D. He, A conceptual model for the outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis., 93 (2020), 211-216. 

[44]

H. Liu and P. Markowich, Selection dynamics for deep neural networks, J. Differ. Equ., 269 (2020), 11540-11574.  doi: 10.1016/j.jde.2020.08.041.

[45]

W. LiuH. W. Hethcote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359-380.  doi: 10.1007/BF00277162.

[46]

M. Lutter, C. Ritter and J. Peters, Deep lagrangian networks: Using physics as model prior for deep learning, arXiv: 1907.04490.

[47]

L. Magri and N. A. K. Doan, First-principles machine learning modelling of COVID-19, arXiv: 2004.09478.

[48]

J. Mena-Lorcat and H. W. Hethcote, Dynamic models of infectious diseases as regulators of population sizes, J. Math. Biol., 30 (1992), 693-716.  doi: 10.1007/BF00173264.

[49]

R. Parshani, S. Carmi and S. Havlin, Epidemic threshold for the susceptible-infectious-susceptible model on random networks, Phys. Rev. Lett., 104 (2010), 258701.

[50] L. PontryaginV. BoltyanskiiR. Gamkrelidze and E. Mishchenko, The Mathematical Theory of Optimal Processes, CRC Press, 1962. 
[51]

M. RaissiP. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686-707.  doi: 10.1016/j.jcp.2018.10.045.

[52]

T. C. Reluga and A. P. Galvani, A general approach for population games with application to vaccination, Math. Biosci., 230 (2011), 67-78.  doi: 10.1016/j.mbs.2011.01.003.

[53]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.  doi: 10.1137/0314056.

[54]

W. H. Schmidt, Numerical methods for optimal control problems with ODE or integral equations, in Large-Scale Scientific Computing, vol. 3743 of Lecture Notes in Comput. Sci., Springer, Berlin, 2006, doi: 10.1007/11666806_28.

[55]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., 60 (2010), 2286-2291.  doi: 10.1016/j.camwa.2010.08.020.

[56]

H. R. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations, Math. Biosci., 111 (1992), 99-130.  doi: 10.1016/0025-5564(92)90081-7.

[57]

D. J. Watts, Small worlds, in Princeton Studies in Complexity, Princeton University Press, Princeton, NJ, 1999,

[58]

S. H. WhiteA. M. del Rey and G. R. Sánchez, Modeling epidemics using cellular automata, Appl. Math. Comput., 186 (2007), 193-202.  doi: 10.1016/j.amc.2006.06.126.

Figure 1.  (a) Reported and fitted cumulative infection and death cases in the US (b) Estimated SEIR parameters and the basic reproduction number. $ \beta $ ($ \mu $) corresponds to the left (right) vertical axis, $ \epsilon = 0.2 $ and $ \gamma = 0.1 $ are almost constant. The dashed line in $ R_0 $ is a zoomed-in version on the tail of the solid line
Figure 2.  Scheduled control for the US in $ 270-300 $ days by SEIR model
Figure 3.  (a) Reported and fitted cumulative infection and death cases in the UK (b) Estimated SEIR parameters and the basic reproduction number. $ \beta $ ($ \mu $) corresponds to the left (right) vertical axis, $ \epsilon = 0.2 $ and $ \gamma = 0.1 $ are almost constant. The dashed line in $ R_0 $ is a zoomed-in version on the tail of the solid line
Figure 4.  (a) Reported and fitted cumulative infection and death cases in France (b) Estimated SEIR parameters and the basic reproduction number. $ \beta $ ($ \mu $) corresponds to the left (right) vertical axis, $ \epsilon = 0.2 $ and $ \gamma = 0.1 $ are almost constant. The dashed line in $ R_0 $ is a zoomed-in version on the tail of the solid line
Figure 5.  (a) Reported and fitted cumulative infection and death cases in China (b) Estimated SEIR parameters and the basic reproduction number. $ \beta $ ($ \mu $) corresponds to the left (right) vertical axis, $ \epsilon = 0.2 $ and $ \gamma = 0.2 $ are almost constant. The dashed line in $ R_0 $ is a zoomed-in version on the tail of the solid line
[1]

Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108

[2]

Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088

[3]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[5]

Qi Luo, Ryan Weightman, Sean T. McQuade, Mateo Díaz, Emmanuel Trélat, William Barbour, Dan Work, Samitha Samaranayake, Benedetto Piccoli. Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : 443-466. doi: 10.3934/nhm.2022016

[6]

Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008

[7]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[8]

Yanfei Zhao, Yepeng Xing. A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021278

[9]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[10]

Michael Herty, Adrian Fazekas, Giuseppe Visconti. A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13 (2) : 217-240. doi: 10.3934/nhm.2018010

[11]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[12]

Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics and Games, 2022, 9 (1) : 75-96. doi: 10.3934/jdg.2021026

[13]

Haitao Song, Fang Liu, Feng Li, Xiaochun Cao, Hao Wang, Zhongwei Jia, Huaiping Zhu, Michael Y. Li, Wei Lin, Hong Yang, Jianghong Hu, Zhen Jin. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021294

[14]

Gabriel Illanes, Ernesto Mordecki, Andrés Sosa. On the impact of the Covid-19 health crisis on GDP forecasting: An empirical approach. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022008

[15]

Monique Chyba, Rinaldo M. Colombo, Mauro Garavello, Benedetto Piccoli. Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : i-ii. doi: 10.3934/nhm.2022020

[16]

Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021234

[17]

Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021059

[18]

Vladimir Djordjevic, Vladimir Stojanovic, Hongfeng Tao, Xiaona Song, Shuping He, Weinan Gao. Data-driven control of hydraulic servo actuator based on adaptive dynamic programming. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1633-1650. doi: 10.3934/dcdss.2021145

[19]

Stefano Almi, Massimo Fornasier, Richard Huber. Data-driven evolutions of critical points. Foundations of Data Science, 2020, 2 (3) : 207-255. doi: 10.3934/fods.2020011

[20]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

2021 Impact Factor: 1.273

Article outline

Figures and Tables

[Back to Top]