• Previous Article
    Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions
  • CPAA Home
  • This Issue
  • Next Article
    Remark on 3-D Navier-Stokes system with strong dissipation in one direction
doi: 10.3934/cpaa.2021094

A linear, decoupled and positivity-preserving numerical scheme for an epidemic model with advection and diffusion

1. 

School of Civil Engineering, Shaoxing University, Shaoxing, Zhejiang 312000, China

2. 

School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and High Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005, China

3. 

School of Mathematics and Statistics, Hubei Engineering University, Xiaogan, Hubei 432000, China

4. 

Computational Transport Phenomena Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

* Corresponding author

Received  February 2021 Revised  April 2021 Published  June 2021

Fund Project: J. Kou and X. Wang were supported by the Scientific and Technical Research Project of Hubei Provincial Department of Education (No.D20192703) and the Technology Creative Project of Excellent Middle & Young Team of Hubei Province (No.T201920). H. Chen was supported by the NSF of China (Grant No.11771363) and the Fundamental Research Funds for the Central Universities (Grant No.20720180003). S. Sun was supported by the grants of King Abdullah University of Science and Technology(KAUST)(No.BAS/1/1351-01, URF/1/4074-01and URF/1/3769-01)

In this paper, we propose an efficient numerical method for a comprehensive infection model that is formulated by a system of nonlinear coupling advection-diffusion-reaction equations. Using some subtle mixed explicit-implicit treatments, we construct a linearized and decoupled discrete scheme. Moreover, the proposed scheme is capable of preserving the positivity of variables, which is an essential requirement of the model under consideration. The proposed scheme uses the cell-centered finite difference method for the spatial discretization, and thus, it is easy to implement. The diffusion terms are treated implicitly to improve the robustness of the scheme. A semi-implicit upwind approach is proposed to discretize the advection terms, and a distinctive feature of the resulting scheme is to preserve the positivity of variables without any restriction on the spatial mesh size and time step size. We rigorously prove the unique existence of discrete solutions and positivity-preserving property of the proposed scheme without requirements for the mesh size and time step size. It is worthwhile to note that these properties are proved using the discrete variational principles rather than the conventional approaches of matrix analysis. Numerical results are also provided to assess the performance of the proposed scheme.

Citation: Jisheng Kou, Huangxin Chen, Xiuhua Wang, Shuyu Sun. A linear, decoupled and positivity-preserving numerical scheme for an epidemic model with advection and diffusion. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021094
References:
[1]

T. ArbogastM. F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., 34 (1997), 828-852.  doi: 10.1137/S0036142994262585.  Google Scholar

[2]

F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001. doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[3]

H. ChenJ. KouS. Sun and T. Zhang, Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media, Comput. Methods Appl. Mech. Engrg., 350 (2019), 641-663.  doi: 10.1016/j.cma.2019.03.023.  Google Scholar

[4]

W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, Journal of Computational Physics: X, 3 (2019), 100031. doi: 10.1016/j.jcpx.2019.100031.  Google Scholar

[5]

Y. Chen and J. Shen, Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models, J. Comput. Phys., 308 (2016), 40-56.  doi: 10.1016/j.jcp.2015.12.006.  Google Scholar

[6]

Y. Cheng, D. Lu, J. Zhou and J. Wei, Existence of traveling wave solutions with critical speed in a delayed diffusive epidemic model, Adv. Differ. Equ., 2019 (2019), 494. doi: 10.1186/s13662-019-2432-6.  Google Scholar

[7]

D. DingQ. Ma and X. Ding, A non-standard finite difference scheme for an epidemic model with vaccination, J. Differ. Equ. Appl., 19 (2013), 179-190.  doi: 10.1080/10236198.2011.614606.  Google Scholar

[8]

D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675-699.  doi: 10.1007/PL00005429.  Google Scholar

[9]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[10]

Z. HuS. M. WiseC. Wang and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), 5323-5339.  doi: 10.1016/j.jcp.2009.04.020.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., B., 115 (1927), 700-721.   Google Scholar

[12]

N. KhiariT. AchouriM. Ben Mohamed and K. Omrani, Finite difference approximate solutions for the Cahn-Hilliard equation, Numer. Methods Partial Differ. Equ., 23 (2007), 437-455.  doi: 10.1002/num.20189.  Google Scholar

[13]

J. KouS. Sun and X. Wang, Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow, SIAM J. Numer. Anal., 56 (2018), 3219-3248.  doi: 10.1137/17M1162287.  Google Scholar

[14]

J. Kou, S. Sun and X. Wang, A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state, SIAM J. Sci. Comput., 42 (2020), B30-B56. doi: 10.1137/19M1251230.  Google Scholar

[15]

K. Y. LamX. Wang and T. Zhang, Traveling Waves for a Class of Diffusive Disease-Transmission Models with Network Structures, SIAM J. Math. Anal., 50 (2018), 5719-5748.  doi: 10.1137/17M1144258.  Google Scholar

[16]

R. E. Mickens, Dynamic Consistency: a Fundamental Principle for Constructing Nonstandard Finite Difference Schemes for Differential Equations, J. Differ. Equ. Appl., 11 (2005), 645-653.  doi: 10.1080/10236190412331334527.  Google Scholar

[17]

R. E. Mickens, Calculation of Denominator Functions for Nonstandard Finite Difference Schemes for Differential Equations Satisfying a Positivity Condition, Numer. Methods Partial Differ. Equ., 23 (2007), 672-691.  doi: 10.1002/num.20198.  Google Scholar

[18]

H. Ramaswamy, A. A. Oberai and Y. C. Yortsos, A comprehensive spatial-temporal infection model, Chem. Eng. Sci., 233 (2021), 116347. Google Scholar

[19]

H. RuiD. Zhao and H. Pan., A block-centered finite difference method for Darcy-Forchheimer model with variable Forchheimer number, Numer. Methods Partial Differ. Equ., 31 (2015), 1603-1622.  doi: 10.1002/num.21963.  Google Scholar

[20]

T. Tang and J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34 (2016), 451-461.  doi: 10.4208/jcm.1603-m2014-0017.  Google Scholar

[21] G. TryggvasonR. Scardovelli and S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows,, Cambridge University Press, New York, 2011.  doi: 10.1017/CBO9780511975264.  Google Scholar
[22]

X. Wang, J. Kou and J. Cai, Stabilized energy factorization approach for Allen-Cahn equation with logarithmic Flory-Huggins potential, J. Sci. Comput., 82 (2020), 25. doi: 10.1007/s10915-020-01127-x.  Google Scholar

[23]

X. Wang, J. Kou and H. Gao, Linear energy stable and maximum principle preserving semi-implicit scheme for Allen-Cahn equation with double well potential, Commun. Nonlinear Sci. Numer. Simul., 98 (2021), 105766. doi: 10.1016/j.cnsns.2021.105766.  Google Scholar

[24]

J. WeiJ. ZhouW. ChenZ. Zhen and L. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure Appl. Anal., 19 (2020), 2853-2886.  doi: 10.3934/cpaa.2020125.  Google Scholar

[25]

S. M. Wise., Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations, J. Sci. Comput., 44 (2010), 38-68.  doi: 10.1007/s10915-010-9363-4.  Google Scholar

[26]

S. M. WiseC. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), 2269-2288.  doi: 10.1137/080738143.  Google Scholar

[27]

J. Xu, J. Hou, Y. Geng and S. Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, Adv. Differ. Equ., 2018 (2018), 108. doi: 10.1186/s13662-018-1560-8.  Google Scholar

[28]

T. Zhang and W. Wang, Existence of traveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.  doi: 10.1016/j.jmaa.2014.04.068.  Google Scholar

[29]

L. Zhao and Z. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.  doi: 10.1093/imamat/hxw033.  Google Scholar

[30]

L. ZhaoZ. C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915.  doi: 10.1007/s00285-018-1227-9.  Google Scholar

[31]

J. ZhouL. SongJ. Wei and H. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.  doi: 10.1016/j.jmaa.2019.03.066.  Google Scholar

show all references

References:
[1]

T. ArbogastM. F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences, SIAM J. Numer. Anal., 34 (1997), 828-852.  doi: 10.1137/S0036142994262585.  Google Scholar

[2]

F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001. doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[3]

H. ChenJ. KouS. Sun and T. Zhang, Fully mass-conservative IMPES schemes for incompressible two-phase flow in porous media, Comput. Methods Appl. Mech. Engrg., 350 (2019), 641-663.  doi: 10.1016/j.cma.2019.03.023.  Google Scholar

[4]

W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, Journal of Computational Physics: X, 3 (2019), 100031. doi: 10.1016/j.jcpx.2019.100031.  Google Scholar

[5]

Y. Chen and J. Shen, Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models, J. Comput. Phys., 308 (2016), 40-56.  doi: 10.1016/j.jcp.2015.12.006.  Google Scholar

[6]

Y. Cheng, D. Lu, J. Zhou and J. Wei, Existence of traveling wave solutions with critical speed in a delayed diffusive epidemic model, Adv. Differ. Equ., 2019 (2019), 494. doi: 10.1186/s13662-019-2432-6.  Google Scholar

[7]

D. DingQ. Ma and X. Ding, A non-standard finite difference scheme for an epidemic model with vaccination, J. Differ. Equ. Appl., 19 (2013), 179-190.  doi: 10.1080/10236198.2011.614606.  Google Scholar

[8]

D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer. Math., 87 (2001), 675-699.  doi: 10.1007/PL00005429.  Google Scholar

[9]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.  Google Scholar

[10]

Z. HuS. M. WiseC. Wang and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228 (2009), 5323-5339.  doi: 10.1016/j.jcp.2009.04.020.  Google Scholar

[11]

W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., B., 115 (1927), 700-721.   Google Scholar

[12]

N. KhiariT. AchouriM. Ben Mohamed and K. Omrani, Finite difference approximate solutions for the Cahn-Hilliard equation, Numer. Methods Partial Differ. Equ., 23 (2007), 437-455.  doi: 10.1002/num.20189.  Google Scholar

[13]

J. KouS. Sun and X. Wang, Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow, SIAM J. Numer. Anal., 56 (2018), 3219-3248.  doi: 10.1137/17M1162287.  Google Scholar

[14]

J. Kou, S. Sun and X. Wang, A novel energy factorization approach for the diffuse-interface model with Peng-Robinson equation of state, SIAM J. Sci. Comput., 42 (2020), B30-B56. doi: 10.1137/19M1251230.  Google Scholar

[15]

K. Y. LamX. Wang and T. Zhang, Traveling Waves for a Class of Diffusive Disease-Transmission Models with Network Structures, SIAM J. Math. Anal., 50 (2018), 5719-5748.  doi: 10.1137/17M1144258.  Google Scholar

[16]

R. E. Mickens, Dynamic Consistency: a Fundamental Principle for Constructing Nonstandard Finite Difference Schemes for Differential Equations, J. Differ. Equ. Appl., 11 (2005), 645-653.  doi: 10.1080/10236190412331334527.  Google Scholar

[17]

R. E. Mickens, Calculation of Denominator Functions for Nonstandard Finite Difference Schemes for Differential Equations Satisfying a Positivity Condition, Numer. Methods Partial Differ. Equ., 23 (2007), 672-691.  doi: 10.1002/num.20198.  Google Scholar

[18]

H. Ramaswamy, A. A. Oberai and Y. C. Yortsos, A comprehensive spatial-temporal infection model, Chem. Eng. Sci., 233 (2021), 116347. Google Scholar

[19]

H. RuiD. Zhao and H. Pan., A block-centered finite difference method for Darcy-Forchheimer model with variable Forchheimer number, Numer. Methods Partial Differ. Equ., 31 (2015), 1603-1622.  doi: 10.1002/num.21963.  Google Scholar

[20]

T. Tang and J. Yang, Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle, J. Comput. Math., 34 (2016), 451-461.  doi: 10.4208/jcm.1603-m2014-0017.  Google Scholar

[21] G. TryggvasonR. Scardovelli and S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows,, Cambridge University Press, New York, 2011.  doi: 10.1017/CBO9780511975264.  Google Scholar
[22]

X. Wang, J. Kou and J. Cai, Stabilized energy factorization approach for Allen-Cahn equation with logarithmic Flory-Huggins potential, J. Sci. Comput., 82 (2020), 25. doi: 10.1007/s10915-020-01127-x.  Google Scholar

[23]

X. Wang, J. Kou and H. Gao, Linear energy stable and maximum principle preserving semi-implicit scheme for Allen-Cahn equation with double well potential, Commun. Nonlinear Sci. Numer. Simul., 98 (2021), 105766. doi: 10.1016/j.cnsns.2021.105766.  Google Scholar

[24]

J. WeiJ. ZhouW. ChenZ. Zhen and L. Tian, Traveling waves in a nonlocal dispersal epidemic model with spatio-temporal delay, Commun. Pure Appl. Anal., 19 (2020), 2853-2886.  doi: 10.3934/cpaa.2020125.  Google Scholar

[25]

S. M. Wise., Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations, J. Sci. Comput., 44 (2010), 38-68.  doi: 10.1007/s10915-010-9363-4.  Google Scholar

[26]

S. M. WiseC. Wang and J. S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47 (2009), 2269-2288.  doi: 10.1137/080738143.  Google Scholar

[27]

J. Xu, J. Hou, Y. Geng and S. Zhang, Dynamic consistent NSFD scheme for a viral infection model with cellular infection and general nonlinear incidence, Adv. Differ. Equ., 2018 (2018), 108. doi: 10.1186/s13662-018-1560-8.  Google Scholar

[28]

T. Zhang and W. Wang, Existence of traveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.  doi: 10.1016/j.jmaa.2014.04.068.  Google Scholar

[29]

L. Zhao and Z. Wang, Traveling wave fronts in a diffusive epidemic model with multiple parallel infectious stages, IMA J. Appl. Math., 81 (2016), 795-823.  doi: 10.1093/imamat/hxw033.  Google Scholar

[30]

L. ZhaoZ. C. Wang and S. Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment, J. Math. Biol., 77 (2018), 1871-1915.  doi: 10.1007/s00285-018-1227-9.  Google Scholar

[31]

J. ZhouL. SongJ. Wei and H. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476 (2019), 522-538.  doi: 10.1016/j.jmaa.2019.03.066.  Google Scholar

Figure 1.  Initial conditions of Example 1 for susceptible $ (S) $ and infected $ (I) $ fractions in space
Figure 2.  Susceptible fraction profiles at different times in Example 1
Figure 3.  Infected fraction profiles at different times in Example 1
Figure 4.  Recovered fraction profiles at different times in Example 1
Figure 5.  Temporal evolution of susceptible, infected and recovered fractions locating at the center of the domain
Figure 6.  Traveling waves of (a) susceptible, (b) infected and (c) recovered fractions along the central horizontal line of the domain at different times
Figure 7.  Comparison with the real infection data
Figure 8.  Preservation of the positivity and summation constraint in Example 1
Figure 9.  Initial conditions of Example 2 for susceptible $ (S) $ and infected $ (I) $ fractions in space
Figure 10.  Susceptible fraction profiles at different times in Example 2
Figure 11.  Infected fraction profiles at different times in Example 2
Figure 12.  Recovered fraction profiles at different times in Example 2
Figure 13.  Preservation of the positivity and summation constraint of the proposed scheme (2.8) in Example 2
Figure 14.  Positivity and summation constraint of the scheme (4.1) in Example 2
[1]

Alexey Penenko. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Problems & Imaging, 2020, 14 (5) : 757-782. doi: 10.3934/ipi.2020035

[2]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[3]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[4]

Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176

[5]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[6]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[7]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[8]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[9]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[10]

Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711

[11]

Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056

[12]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[13]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[14]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[15]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[16]

Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208

[17]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[18]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[19]

Yuchi Qiu, Weitao Chen, Qing Nie. A hybrid method for stiff reaction–diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6387-6417. doi: 10.3934/dcdsb.2019144

[20]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

2019 Impact Factor: 1.105

Article outline

Figures and Tables

[Back to Top]