doi: 10.3934/cpaa.2021098

Boundary stabilization of non-diagonal systems by proportional feedback forms

Alexandru Ioan Cuza University, Department of Mathematics, and Octav Mayer Institute of Mathematics (Romanian Academy), Carol I No. 11, 700506 Iaşi, Romania

Received  January 2021 Revised  May 2021 Published  June 2021

Fund Project: This work was supported by a grant of the Romanian Ministry of Research and Innovation, CNCS – UEFISCDI, project number PN-III-P1-1.1-TE-2019-0348, within PNCDI III

In this work, we are concerned with the problem of boundary exponential stabilization, in a Hilbert space $ H $, of parabolic type equations, namely equations for which their linear parts generate analytic $ C_0- $semigroups. We consider the case where the projection of the linear leading operator, on a given Riesz basis of $ H $, is non-diagonal. We do not assume that the linear operator has compact resolvent. Therefore, the Riesz basis is not necessarily an eigenbasis. The boundary stabilizer is given in a simple linear feedback form, of finite-dimensional structure, involving only the Riesz basis. To illustrate the results, at the end of the paper, we provide an example of stabilization of a fourth-order evolution equation on the half-axis.

Citation: Ionuţ Munteanu. Boundary stabilization of non-diagonal systems by proportional feedback forms. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021098
References:
[1]

L. ArnoldH. Crauel and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), 451-461.  doi: 10.1137/0321027.  Google Scholar

[2]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system, SIAM J Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[3]

V. Barbu, Boundary Stabilization of Equilibrium Solutions to Parabolic Equations, IEEE Trans. Autom. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[4]

V. Barbu, Controllability and Stabilization of Parabolic Equations, Birkhäuser-Springer, Basel, 2018. doi: 10.1007/978-3-319-76666-9.  Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high-and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[6]

M. G. Burgos and L. Teresa, Some results on controllability for linear and nonlinear heat equations in unbounded domains, Adv. Differ. Equ., 12 (2007), 1201-1240.   Google Scholar

[7]

A. V. Filinovskii, Stabilization of the solutions of the wave equation in unbounded domains, Mat. Sb., 187 (1996), 131-160.  doi: 10.1070/SM1996v187n06ABEH000141.  Google Scholar

[8]

A. V. Gorshkov, Stabilization of the one-dimensional heat equation on a semibounded rod, Russ. Math. Surv., 56 (2001), 409-410.  doi: 10.1070/RM2001v056n02ABEH000388.  Google Scholar

[9]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs (Advances in Design and Control), SIAM, 2008. doi: 10.1137/1.9780898718607.  Google Scholar

[10]

I. Lasiecka and R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers, Nonlin. Anal. Theory Meth. Appl., 121 (2015), 424-446.  doi: 10.1016/j.na.2015.03.012.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations, SIAM J. Control Optim., 21 (1983), 766-803.  doi: 10.1137/0321047.  Google Scholar

[12]

H. Lian, J. Zhao and R. P. Agarwal, Upper and lower solution method for nth-order BVPs on an infinite interval, Bound. Value Probl. (2014), 17 pp. doi: 10.1186/1687-2770-2014-100.  Google Scholar

[13]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\mathbb{R}^n$, Studia Math., 128 (1998), 171-198.  doi: 10.4064/sm-128-2-171-198.  Google Scholar

[14]

S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half-line, Trans. Am. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.  Google Scholar

[15]

F. Kh. Mukminov and I. M. Bikkulov, Stabilization of the norm of the solution of a mixed problem in an unbounded domain for parabolic equations of orders 4 and 6, Mat. Sb., 195 (2004), 115-142.  doi: 10.1070/SM2004v195n03ABEH000810.  Google Scholar

[16]

I. Munteanu, Boundary Stabilization of Parabolic Equations, Birkhauser-Springer, Basel, 2019. doi: 10.1007/978-3-030-11099-4.  Google Scholar

[17]

I. Munteanu, Exponential stabilization of the semilinear heat equation with nonlocal boundary conditions, J. Math. Analysis Appl., 492 (2020), art. no. 124512. doi: 10.1016/j.jmaa.2020.124512.  Google Scholar

[18]

A. Preumont, Collocated versus non-collocated control. In: Vibration Control of Active Structures. Solid Mechanics and Its Applications, Springer, Dordrecht, 1997. doi: 10.1007/978-94-011-5654-7.  Google Scholar

[19]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies Appl. Math., 52 (1973), 189-211.  doi: 10.1002/sapm1973523189.  Google Scholar

[20]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[21]

R. Triggiani, Boundary feedback stabilization of parabolic equations, Appl. Math. Optim., 6 (1980), 201-220.  doi: 10.1007/BF01442895.  Google Scholar

show all references

References:
[1]

L. ArnoldH. Crauel and V. Wihstutz, Stabilization of linear systems by noise, SIAM J. Control Optim., 21 (1983), 451-461.  doi: 10.1137/0321027.  Google Scholar

[2]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system, SIAM J Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[3]

V. Barbu, Boundary Stabilization of Equilibrium Solutions to Parabolic Equations, IEEE Trans. Autom. Control, 58 (2013), 2416-2420.  doi: 10.1109/TAC.2013.2254013.  Google Scholar

[4]

V. Barbu, Controllability and Stabilization of Parabolic Equations, Birkhäuser-Springer, Basel, 2018. doi: 10.1007/978-3-319-76666-9.  Google Scholar

[5]

V. BarbuI. Lasiecka and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high-and low-gain feedback controllers, Nonlinear Anal., 64 (2006), 2704-2746.  doi: 10.1016/j.na.2005.09.012.  Google Scholar

[6]

M. G. Burgos and L. Teresa, Some results on controllability for linear and nonlinear heat equations in unbounded domains, Adv. Differ. Equ., 12 (2007), 1201-1240.   Google Scholar

[7]

A. V. Filinovskii, Stabilization of the solutions of the wave equation in unbounded domains, Mat. Sb., 187 (1996), 131-160.  doi: 10.1070/SM1996v187n06ABEH000141.  Google Scholar

[8]

A. V. Gorshkov, Stabilization of the one-dimensional heat equation on a semibounded rod, Russ. Math. Surv., 56 (2001), 409-410.  doi: 10.1070/RM2001v056n02ABEH000388.  Google Scholar

[9]

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs (Advances in Design and Control), SIAM, 2008. doi: 10.1137/1.9780898718607.  Google Scholar

[10]

I. Lasiecka and R. Triggiani, Stabilization to an equilibrium of the Navier-Stokes equations with tangential action of feedback controllers, Nonlin. Anal. Theory Meth. Appl., 121 (2015), 424-446.  doi: 10.1016/j.na.2015.03.012.  Google Scholar

[11]

I. Lasiecka and R. Triggiani, Stabilization and structural assignment of Dirichlet boundary feedback parabolic equations, SIAM J. Control Optim., 21 (1983), 766-803.  doi: 10.1137/0321047.  Google Scholar

[12]

H. Lian, J. Zhao and R. P. Agarwal, Upper and lower solution method for nth-order BVPs on an infinite interval, Bound. Value Probl. (2014), 17 pp. doi: 10.1186/1687-2770-2014-100.  Google Scholar

[13]

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $\mathbb{R}^n$, Studia Math., 128 (1998), 171-198.  doi: 10.4064/sm-128-2-171-198.  Google Scholar

[14]

S. Micu and E. Zuazua, On the lack of null-controllability of the heat equation on the half-line, Trans. Am. Math. Soc., 353 (2001), 1635-1659.  doi: 10.1090/S0002-9947-00-02665-9.  Google Scholar

[15]

F. Kh. Mukminov and I. M. Bikkulov, Stabilization of the norm of the solution of a mixed problem in an unbounded domain for parabolic equations of orders 4 and 6, Mat. Sb., 195 (2004), 115-142.  doi: 10.1070/SM2004v195n03ABEH000810.  Google Scholar

[16]

I. Munteanu, Boundary Stabilization of Parabolic Equations, Birkhauser-Springer, Basel, 2019. doi: 10.1007/978-3-030-11099-4.  Google Scholar

[17]

I. Munteanu, Exponential stabilization of the semilinear heat equation with nonlocal boundary conditions, J. Math. Analysis Appl., 492 (2020), art. no. 124512. doi: 10.1016/j.jmaa.2020.124512.  Google Scholar

[18]

A. Preumont, Collocated versus non-collocated control. In: Vibration Control of Active Structures. Solid Mechanics and Its Applications, Springer, Dordrecht, 1997. doi: 10.1007/978-94-011-5654-7.  Google Scholar

[19]

D. L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations, Studies Appl. Math., 52 (1973), 189-211.  doi: 10.1002/sapm1973523189.  Google Scholar

[20]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.  doi: 10.1137/1020095.  Google Scholar

[21]

R. Triggiani, Boundary feedback stabilization of parabolic equations, Appl. Math. Optim., 6 (1980), 201-220.  doi: 10.1007/BF01442895.  Google Scholar

[1]

Kunimochi Sakamoto. Destabilization threshold curves for diffusion systems with equal diffusivity under non-diagonal flux boundary conditions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 641-654. doi: 10.3934/dcdsb.2016.21.641

[2]

Junxiong Jia, Jigen Peng, Jinghuai Gao. Posterior contraction for empirical bayesian approach to inverse problems under non-diagonal assumption. Inverse Problems & Imaging, 2021, 15 (2) : 201-228. doi: 10.3934/ipi.2020061

[3]

Gen Qi Xu, Siu Pang Yung. Stability and Riesz basis property of a star-shaped network of Euler-Bernoulli beams with joint damping. Networks & Heterogeneous Media, 2008, 3 (4) : 723-747. doi: 10.3934/nhm.2008.3.723

[4]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[5]

Sergei A. Avdonin, Boris P. Belinskiy. On the basis properties of the functions arising in the boundary control problem of a string with a variable tension. Conference Publications, 2005, 2005 (Special) : 40-49. doi: 10.3934/proc.2005.2005.40

[6]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

[7]

Scott W. Hansen, Rajeev Rajaram. Riesz basis property and related results for a Rao-Nakra sandwich beam. Conference Publications, 2005, 2005 (Special) : 365-375. doi: 10.3934/proc.2005.2005.365

[8]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[9]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[10]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[11]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[12]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[13]

Marc Puche, Timo Reis, Felix L. Schwenninger. Funnel control for boundary control systems. Evolution Equations & Control Theory, 2021, 10 (3) : 519-544. doi: 10.3934/eect.2020079

[14]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[15]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[16]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[17]

D. J. W. Simpson. On the stability of boundary equilibria in Filippov systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021097

[18]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[19]

V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete & Continuous Dynamical Systems, 1995, 1 (2) : 223-236. doi: 10.3934/dcds.1995.1.223

[20]

Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034

2019 Impact Factor: 1.105

Article outline

[Back to Top]