September  2021, 20(9): 3161-3192. doi: 10.3934/cpaa.2021101

Riesz-type representation formulas for subharmonic functions in sub-Riemannian settings

1. 

Free researcher

2. 

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133 Milano, Italy

* Corresponding author

Received  February 2021 Revised  May 2021 Published  September 2021 Early access  June 2021

Fund Project: The second author is member of INdAM and is partially supported by the INdAM-GNAMPA project Metodi topologici per problemi al contorno associati a certe classi di equazioni alle derivate parziali

In this paper we use a potential-theoretic approach to establish various representation theorems and Poisson-Jensen-type formulas for subharmonic functions in sub-Riemannian settings. We also characterize the Radon measures in $ \mathbb{R}^N $ which are the Riesz-measures of bounded-above subharmonic functions in the whole space $ \mathbb{R}^N $.

Citation: Beatrice Abbondanza, Stefano Biagi. Riesz-type representation formulas for subharmonic functions in sub-Riemannian settings. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3161-3192. doi: 10.3934/cpaa.2021101
References:
[1]

D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer Monogr. Math., Springer, London, 2001. doi: 10.1007/978-1-4471-0233-5.  Google Scholar

[2]

E. Battaglia and S. Biagi, Superharmonic functions associated with hypoelliptic non-Hörmander operators, Commun. Contemp. Math., 22 (2020), 32 pp. doi: 10.1142/S0219199718500712.  Google Scholar

[3]

E. BattagliaS. Biagi and A. Bonfiglioli, The strong maximum principle and the Harnack inequality for a class of hypoelliptic non-Hörmander operators, Ann. Inst. Fourier (Grenoble), 66 (2016), 589-631.   Google Scholar

[4]

H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics 22 Springer-Verlag, Berlin-New York, 1966.  Google Scholar

[5]

S. Biagi, On the Gibbons conjecture for homogeneous Hörmander operators, Nonlinear Differ. Equ. Appl., 26 (2019), 26-49.  doi: 10.1007/s00030-019-0594-2.  Google Scholar

[6]

S. Biagi and A. Bonfiglioli, The existence of a global fundamental solution for homogeneous Hörmander operators via a global Lifting method, Proc. Lond. Math. Soc., 114 (2017), 855-889.  doi: 10.1112/plms.12024.  Google Scholar

[7]

S. Biagi and A. Bonfiglioli, An introduction to the Geometrical Analysis of Vector Fields. With Applications To Maximum Principles And Lie Groups, World Scientific Publishing Company, 2018.  Google Scholar

[8]

S. Biagi and A. Bonfiglioli, Global Heat kernels for parabolic homogeneous Hörmander operators, preprint, arXiv: 1910.09907 Google Scholar

[9]

S. Biagi, A. Bonfiglioli and M. Bramanti, Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares, J. Math. Anal. Appl., 498 (2021). doi: 10.1016/j.jmaa.2021.124935.  Google Scholar

[10]

S. Biagi, A. Bonfiglioli and M. Bramanti, Global estimates for the fundamental solution of homogeneous Hörmander sums of squares, arXiv: 1906.07836. Google Scholar

[11]

S. Biagi and M. Bramanti, Global Gaussian estimates for the heat kernel of homogeneous sums of squares, to appear in Potential Anal. Google Scholar

[12]

S. Biagi and M. Bramanti, Non-divergence operators structured on homogeneous Hörmander vector fields: heat kernels and global Gaussian bounds, arXiv: 2011.09322. Google Scholar

[13]

S. Biagi and E. Lanconelli, Large sets at infinity and Maximum Pinciple on unbounded domains for a class of sub-elliptic operators, J. Differ. Equ., 269 (2020), 9680-9719.  doi: 10.1016/j.jde.2020.06.060.  Google Scholar

[14]

S. Biagi, A. Pinamonti and E. Vecchi, Pohozaev-type identities for differential operators driven by homogeneous vector fields, Nonlinear Differ. Equ. Appl., 28 (2021). doi: 10.1007/s00030-020-00664-6.  Google Scholar

[15]

A. Bonfiglioli and C. Cinti, A Poisson-Jensen type representation formula for subharmonic functions on stratified Lie groups, Potential Anal., 22 (2005), 151-169.  doi: 10.1007/s11118-004-0588-4.  Google Scholar

[16]

A. Bonfiglioli and C. Cinti, The theory of energy for sub-Laplacians with an application to quasi-continuity, Manuscripta Math., 118 (2005), 289-309.  doi: 10.1007/s00229-005-0579-9.  Google Scholar

[17]

A. Bonfiglioli and E. Lanconelli, Subharmonic functions in sub-Riemannian settings, J. Eur. Math. Soc., 15 (2013), 387-441.  doi: 10.4171/JEMS/364.  Google Scholar

[18]

A. BonfiglioliE. Lanconelli and A. Tommasoli, Convexity of average operators for subsolutions to subelliptic equations, Anal. Partial Differ. Equ., 7 (2014), 345-373.  doi: 10.2140/apde.2014.7.345.  Google Scholar

[19]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, New York, N.Y., 2007.  Google Scholar

[20]

J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.   Google Scholar

[21]

M. Brelot, Axiomatique des Fonctions Harmoniques, Les Presses de l'Université de Montréal, Montréal, 1969.  Google Scholar

[22]

M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, 1960.  Google Scholar

[23]

G. CaristiL. D'Ambrosio and E. Mitidieri, Liouville theorems for some nonlinear inequalities, Proc. Steklov Inst. Math., 260 (2008), 90-111.  doi: 10.1134/S0081543808010070.  Google Scholar

[24]

C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer-Verlag, 1972.  Google Scholar

[25]

L. D'Ambrosio and E. Mitidieri, Representation formulae of solutions of second order elliptic inequalities, Nonlinear Anal., 178 (2019), 310-336.  doi: 10.1016/j.na.2018.08.014.  Google Scholar

[26]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020.  doi: 10.1016/j.aim.2009.12.017.  Google Scholar

[27]

L. D'Ambrosio and E. Mitidieri, Nonnegative solutions of some quasilinear elliptic inequalities and applications, SB Math., 201 (2010), 855-871.  doi: 10.1070/SM2010v201n06ABEH004094.  Google Scholar

[28]

L. D'Ambrosio and E. Mitidieri, Liouville Theorems of some second order elliptic inequalities, Preprint, 2018, 40 pp. doi: 10.1016/j.na.2018.08.014.  Google Scholar

[29]

L. D'AmbrosioE. Mitidieri and S. I. Pohozaev, Representation formulae and inequalities for solutions of a class of second order partial differential equations, Trans. Amer. Math. Soc., 358 (2006), 893-910.  doi: 10.1090/S0002-9947-05-03717-7.  Google Scholar

[30]

N. du Plessis, An Introduction to Potential Theory, Oliver and Boyd, Edinburgh, 1970.  Google Scholar

[31]

G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.  doi: 10.1007/BF02386204.  Google Scholar

[32]

R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble), 12 (1962), 415-571.   Google Scholar

[33]

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.  Google Scholar

[34]

E. Mitidieri and S. I. Pohozaev, Positivity property of solutions of some elliptic inequalities on $\mathbb{R}^n$, Dokl. Math., 68 (2003), 339-344.   Google Scholar

[35]

A. Parmeggiani, A remark on the stability of $C^\infty $-hypoellipticity under lower-order perturbations, J. Pseudo-Differ. Oper. Appl., 6 (2015), 227-235.  doi: 10.1007/s11868-015-0118-8.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.  Google Scholar

[37] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, London, 1967.   Google Scholar

show all references

References:
[1]

D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer Monogr. Math., Springer, London, 2001. doi: 10.1007/978-1-4471-0233-5.  Google Scholar

[2]

E. Battaglia and S. Biagi, Superharmonic functions associated with hypoelliptic non-Hörmander operators, Commun. Contemp. Math., 22 (2020), 32 pp. doi: 10.1142/S0219199718500712.  Google Scholar

[3]

E. BattagliaS. Biagi and A. Bonfiglioli, The strong maximum principle and the Harnack inequality for a class of hypoelliptic non-Hörmander operators, Ann. Inst. Fourier (Grenoble), 66 (2016), 589-631.   Google Scholar

[4]

H. Bauer, Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics 22 Springer-Verlag, Berlin-New York, 1966.  Google Scholar

[5]

S. Biagi, On the Gibbons conjecture for homogeneous Hörmander operators, Nonlinear Differ. Equ. Appl., 26 (2019), 26-49.  doi: 10.1007/s00030-019-0594-2.  Google Scholar

[6]

S. Biagi and A. Bonfiglioli, The existence of a global fundamental solution for homogeneous Hörmander operators via a global Lifting method, Proc. Lond. Math. Soc., 114 (2017), 855-889.  doi: 10.1112/plms.12024.  Google Scholar

[7]

S. Biagi and A. Bonfiglioli, An introduction to the Geometrical Analysis of Vector Fields. With Applications To Maximum Principles And Lie Groups, World Scientific Publishing Company, 2018.  Google Scholar

[8]

S. Biagi and A. Bonfiglioli, Global Heat kernels for parabolic homogeneous Hörmander operators, preprint, arXiv: 1910.09907 Google Scholar

[9]

S. Biagi, A. Bonfiglioli and M. Bramanti, Global estimates in Sobolev spaces for homogeneous Hörmander sums of squares, J. Math. Anal. Appl., 498 (2021). doi: 10.1016/j.jmaa.2021.124935.  Google Scholar

[10]

S. Biagi, A. Bonfiglioli and M. Bramanti, Global estimates for the fundamental solution of homogeneous Hörmander sums of squares, arXiv: 1906.07836. Google Scholar

[11]

S. Biagi and M. Bramanti, Global Gaussian estimates for the heat kernel of homogeneous sums of squares, to appear in Potential Anal. Google Scholar

[12]

S. Biagi and M. Bramanti, Non-divergence operators structured on homogeneous Hörmander vector fields: heat kernels and global Gaussian bounds, arXiv: 2011.09322. Google Scholar

[13]

S. Biagi and E. Lanconelli, Large sets at infinity and Maximum Pinciple on unbounded domains for a class of sub-elliptic operators, J. Differ. Equ., 269 (2020), 9680-9719.  doi: 10.1016/j.jde.2020.06.060.  Google Scholar

[14]

S. Biagi, A. Pinamonti and E. Vecchi, Pohozaev-type identities for differential operators driven by homogeneous vector fields, Nonlinear Differ. Equ. Appl., 28 (2021). doi: 10.1007/s00030-020-00664-6.  Google Scholar

[15]

A. Bonfiglioli and C. Cinti, A Poisson-Jensen type representation formula for subharmonic functions on stratified Lie groups, Potential Anal., 22 (2005), 151-169.  doi: 10.1007/s11118-004-0588-4.  Google Scholar

[16]

A. Bonfiglioli and C. Cinti, The theory of energy for sub-Laplacians with an application to quasi-continuity, Manuscripta Math., 118 (2005), 289-309.  doi: 10.1007/s00229-005-0579-9.  Google Scholar

[17]

A. Bonfiglioli and E. Lanconelli, Subharmonic functions in sub-Riemannian settings, J. Eur. Math. Soc., 15 (2013), 387-441.  doi: 10.4171/JEMS/364.  Google Scholar

[18]

A. BonfiglioliE. Lanconelli and A. Tommasoli, Convexity of average operators for subsolutions to subelliptic equations, Anal. Partial Differ. Equ., 7 (2014), 345-373.  doi: 10.2140/apde.2014.7.345.  Google Scholar

[19]

A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, New York, N.Y., 2007.  Google Scholar

[20]

J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304.   Google Scholar

[21]

M. Brelot, Axiomatique des Fonctions Harmoniques, Les Presses de l'Université de Montréal, Montréal, 1969.  Google Scholar

[22]

M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, 1960.  Google Scholar

[23]

G. CaristiL. D'Ambrosio and E. Mitidieri, Liouville theorems for some nonlinear inequalities, Proc. Steklov Inst. Math., 260 (2008), 90-111.  doi: 10.1134/S0081543808010070.  Google Scholar

[24]

C. Constantinescu and A. Cornea, Potential Theory on Harmonic Spaces, Springer-Verlag, 1972.  Google Scholar

[25]

L. D'Ambrosio and E. Mitidieri, Representation formulae of solutions of second order elliptic inequalities, Nonlinear Anal., 178 (2019), 310-336.  doi: 10.1016/j.na.2018.08.014.  Google Scholar

[26]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities, Adv. Math., 224 (2010), 967-1020.  doi: 10.1016/j.aim.2009.12.017.  Google Scholar

[27]

L. D'Ambrosio and E. Mitidieri, Nonnegative solutions of some quasilinear elliptic inequalities and applications, SB Math., 201 (2010), 855-871.  doi: 10.1070/SM2010v201n06ABEH004094.  Google Scholar

[28]

L. D'Ambrosio and E. Mitidieri, Liouville Theorems of some second order elliptic inequalities, Preprint, 2018, 40 pp. doi: 10.1016/j.na.2018.08.014.  Google Scholar

[29]

L. D'AmbrosioE. Mitidieri and S. I. Pohozaev, Representation formulae and inequalities for solutions of a class of second order partial differential equations, Trans. Amer. Math. Soc., 358 (2006), 893-910.  doi: 10.1090/S0002-9947-05-03717-7.  Google Scholar

[30]

N. du Plessis, An Introduction to Potential Theory, Oliver and Boyd, Edinburgh, 1970.  Google Scholar

[31]

G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207.  doi: 10.1007/BF02386204.  Google Scholar

[32]

R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble), 12 (1962), 415-571.   Google Scholar

[33]

L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.  doi: 10.1007/BF02392081.  Google Scholar

[34]

E. Mitidieri and S. I. Pohozaev, Positivity property of solutions of some elliptic inequalities on $\mathbb{R}^n$, Dokl. Math., 68 (2003), 339-344.   Google Scholar

[35]

A. Parmeggiani, A remark on the stability of $C^\infty $-hypoellipticity under lower-order perturbations, J. Pseudo-Differ. Oper. Appl., 6 (2015), 227-235.  doi: 10.1007/s11868-015-0118-8.  Google Scholar

[36]

W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.  Google Scholar

[37] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, London, 1967.   Google Scholar
[1]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[2]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[3]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[4]

Marko Kostić. Almost periodic type functions and densities. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021008

[5]

Hirobumi Mizuno, Iwao Sato. L-functions and the Selberg trace formulas for semiregular bipartite graphs. Conference Publications, 2003, 2003 (Special) : 638-646. doi: 10.3934/proc.2003.2003.638

[6]

Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155

[7]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[8]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[9]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

[10]

Katsukuni Nakagawa. Compactness of transfer operators and spectral representation of Ruelle zeta functions for super-continuous functions. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6331-6350. doi: 10.3934/dcds.2020282

[11]

Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639

[12]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[13]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[14]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[15]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[16]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[17]

Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations & Control Theory, 2015, 4 (1) : 61-67. doi: 10.3934/eect.2015.4.61

[18]

Olaf Klein. On the representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2591-2614. doi: 10.3934/dcds.2015.35.2591

[19]

Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027

[20]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

2020 Impact Factor: 1.916

Article outline

[Back to Top]