In this work we study, by a semigroup approach, a transmission problem based on biharmonic equations with boundary and transmission conditions, in two juxtaposed habitats. We give a result of existence and uniqueness of the classical solution in $ L^p $-spaces, for $ p \in (1,+\infty) $, using analytic semigroups and operators sum theory in Banach spaces. To this end, we invert explicitly the determinant operator of the transmission system in $ L^p $-spaces using the $ \mathcal{E}_{\infty} $-calculus and the Dore-Venni sums theory.
Citation: |
[1] |
B. Barraza Martínez, R. Denk, J. Hernández Monzón, F. Kammerlander and M. Nendel, Regularity and asymptotic behavior for a damped plate-membrane transmission problem, J. Math. Anal. Appl, 474 (2019), 1082-1103.
doi: 10.1016/j.jmaa.2019.02.005.![]() ![]() ![]() |
[2] |
J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat., 21 (1983), 163-168.
doi: 10.1007/BF02384306.![]() ![]() ![]() |
[3] |
D. L. Burkholder, A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab., 9 (1981), 997-1011.
![]() ![]() |
[4] |
F. Cakoni, G. C. Hsiao and W. L. Wendland, On the boundary integral equation methodfor a mixed boundary value problem of the biharmonic equation, Complex Var., 50 (2005), 681-696.
doi: 10.1080/02781070500087394.![]() ![]() ![]() |
[5] |
D. S. Cohen and J. D. Murray, A generalized diffusion model for growth and dispersal in population, J. Math. Biol., 12 (1981), 237-249.
doi: 10.1007/BF00276132.![]() ![]() ![]() |
[6] |
M. Costabel, E. Stephan and W. L. Wengland, On boundary integral equations of the first kind for the bi-Laplacian in a polygonal plane domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4e serie, 10 (1983), 197-241.
![]() ![]() |
[7] |
G. Da Prato and P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. pures et appl., 54 (1975), 305-387.
![]() ![]() |
[8] |
G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z., 196 (1987), 189-201.
doi: 10.1007/BF01163654.![]() ![]() ![]() |
[9] |
A. Favini, R. Labbas, K. Lemrabet, S. Maingot and H. Sidibé, Transmission Problem for an Abstract Fourth-order Differential Equation of Elliptic Type in UMD Spaces, Adv. Differ. Equ., 15 (2010), 43-72.
![]() ![]() |
[10] |
A. Favini, R. Labbas, A. Medeghri and A. Menad, Analytic semigroups generated by the dispersal process in two habitats incorporating individual behavior at the interface, J. Math. Anal. Appl., 471 (2019), 448-480.
doi: 10.1016/j.jmaa.2018.10.085.![]() ![]() ![]() |
[11] |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
[12] |
P. Grisvard, Spazi di tracce e applicazioni, Rendiconti di Mat., Serie VI, 5 (1972), 657-729.
![]() ![]() |
[13] |
Z. Guo, B. Lai and D. Ye, Revisiting the biharmonic equation modelling electrostatic actuation in lower dimensions, Proc. Amer. Math. Soc., 142 (2014), 2027-2034.
doi: 10.1090/S0002-9939-2014-11895-8.![]() ![]() ![]() |
[14] |
M. Haase, The Functional Calculus for Sectorial Operators, Birkhauser, 2006.
doi: 10.1007/3-7643-7698-8.![]() ![]() ![]() |
[15] |
F. Hassine, Logarithmic stabilization of the Euler-Bernoulli transmission plate equation with locally distributed Kelvin-Voigt damping, J. Math. Anal. Appl., 455 (2017), 1765-1782.
doi: 10.1016/j.jmaa.2017.06.068.![]() ![]() ![]() |
[16] |
A. F. Hrustalev and B. I. Kogan, A boundary-value problem for the biharmonic equation in elasticity theory, (Russian) Izv. Vys$\check s$. U$\check cebn$. Zaved. Matematika, 4 (1958), 241-247.
![]() ![]() |
[17] |
H. Komatsu, Fractional powers of operators, Pac. J. Math., 19 (1966), 285-346.
![]() ![]() |
[18] |
M. Kotschote, Maximal $L^p$-regularity for a linear three-phase problem of para-bolic-elliptic type, J. Evol. Equ., 10 (2010), 293-318.
doi: 10.1007/s00028-009-0050-6.![]() ![]() ![]() |
[19] |
R. Labbas, S. Maingot, D. Manceau and A. Thorel, On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain, J. Math. Anal. Appl., 450 (2017), 351-376.
doi: 10.1016/j.jmaa.2017.01.026.![]() ![]() ![]() |
[20] |
R. Labbas, K. Lemrabet, S. Maingot and A. Thorel, Generalized linear models for population dynamics in two juxtaposed habitats, Discrete Contin. Dyn. Syst. - A, 39 (2019), 2933-2960.
doi: 10.3934/dcds.2019122.![]() ![]() ![]() |
[21] |
K. Limam, R. Labbas, K. Lemrabet, A. Medeghri and M. Meisner, On Some Transmission Problems Set in a Biological Cell, Analysis and Resolution, J. Differ. Equ., 259 (2015), 2695-2731.
doi: 10.1016/j.jde.2015.04.002.![]() ![]() ![]() |
[22] |
F. Lin and Y. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proceedings of the Royal Society of London A, 463 (2007), 1323-1337.
doi: 10.1098/rspa.2007.1816.![]() ![]() ![]() |
[23] |
J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Publications mathé-matiques de l'I.H.É.S., 19 (1964), 5-68.
![]() ![]() |
[24] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhauser, Basel, Boston, Berlin, 1995.
![]() ![]() |
[25] |
F. L. Ochoa, A generalized reaction-diffusion model for spatial structures formed by motile cells, BioSystems, 17 (1984), 35-50.
![]() |
[26] |
K. M. Perfekt, The transmission problem on a three-dimensional wedge, Arch. Ration. Mech. Anal., 231 (2019), 1745-1780.
doi: 10.1007/s00205-018-1308-3.![]() ![]() ![]() |
[27] |
J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach spaces, Mathematische Zeitschrift, 203 (1990), 429-452.
doi: 10.1007/BF02570748.![]() ![]() ![]() |
[28] |
J. Prüss and H. Sohr, Imaginary powers of elliptic second order differential operators in $L^p$-spaces, Hiroshima Math. J., 23 (1993), 161-192.
![]() ![]() |
[29] |
J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, Probability and Banach Spaces: Lecture Notes in Math., 1221 (1986), 195-222.
doi: 10.1007/BFb0099115.![]() ![]() ![]() |
[30] |
H. Saker and N. Bouselsal, On the bilaplacian problem with nonlinear boundary conditions, Indian J. Pure Appl. Math., 47 (2016), 425-435.
doi: 10.1007/s13226-016-0178-3.![]() ![]() ![]() |
[31] |
A. Thorel, Operational approach for biharmonic equations in $L^p$-spaces, J. Evol. Equ., 20 (2020), 631-657.
doi: 10.1007/s00028-019-00536-2.![]() ![]() ![]() |
[32] |
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland publishing company Amsterdam New York Oxford, 1978.
![]() ![]() |
[33] |
J. Wang, J. Lang and Y. Chen, Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission, Discrete Contin. Dyn. Syst. - B, 22 (2017), 3721-3747.
doi: 10.3934/dcdsb.2017186.![]() ![]() ![]() |
[34] |
C. F. Yanga and S. Buterin, Uniqueness of the interior transmission problem with partial information on the potential and eigenvalues, J. Differ. Equ., 260 (2016), 4871-4887.
doi: 10.1016/j.jde.2015.11.031.![]() ![]() ![]() |