September  2021, 20(9): 3215-3234. doi: 10.3934/cpaa.2021103

Fractional Yamabe solitons and fractional Nirenberg problem

1. 

Department of Mathematics, Sogang University, Seoul 04107, Korea, Korea Institute for Advanced Study, Hoegiro 85, Seoul 02455, Korea

2. 

Korea Institute for Advanced Study, Hoegiro 85, Seoul 02455, Korea

3. 

Department of Mathematics, Johns Hopkins University, Baltimore MD 21218, USA

* Corresponding author

Received  January 2021 Revised  May 2021 Published  September 2021 Early access  June 2021

Fund Project: Ho's research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2019R1F1A1041021) and (NRF-2020R1A6A1A03047877), and by Korea Institute for Advanced Study (KIAS) grant funded by the Korea government (MSIP)

In this paper, we first study the fractional Yamabe solitons, which are the self-similar solutions to fractional Yamabe flow.We prove some rigidity results and Liouville type results for such solitons.We thenconsider the fractional Nirenberg problem:the problem of prescribing fractional order curvature on the sphere.More precisely, we prove that there exists a conformal metric on the unit sphere such that itsfractional order curvature is $ f $, when $ f $ possesses certain reflection or rotation symmetry.

Citation: Pak Tung Ho, Rong Tang. Fractional Yamabe solitons and fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2021, 20 (9) : 3215-3234. doi: 10.3934/cpaa.2021103
References:
[1]

J. Case and S. Y. A. Chang, On fractional GJMS operators, Commun. Pure Appl. Math., 69 (2016), 1017-1061.   Google Scholar

[2]

H. Chan, Y. Sire and L. Sun, Convergence of the fractional Yamabe flow for a class of initial data, preprint, arXiv: 1809.05753v1. Google Scholar

[3]

S. Y. A. Chang and M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.   Google Scholar

[4]

S. Y. A. ChangM. J. Gursky and P. C. Yang, The scalar curvature equation on 2-and 3-spheres, Calc. Var. Partial Differ. Equ., 1 (1993), 205-229.   Google Scholar

[5]

S. Y. A. Chang and P. C. Yang, A perturbation result in prescribing scalar curvature on $S^n$, Duke Math. J., 64 (1991), 27-69.  doi: 10.1215/S0012-7094-91-06402-1.  Google Scholar

[6]

S. Y. A. Chang and P. C. Yang, Conformal deformation of metrics on $S^2$, J. Differ. Geom., 27 (1988), 259-296.   Google Scholar

[7]

S. Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[8]

W. ChenC. Li and B. Ou, Classifications of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

X. Chen, P. T. Ho and J. Xiong, A fractional conformal curvature flow on the unit sphere, preprint, arXiv: 1906.08434. Google Scholar

[10]

X. Chen and X. Xu, The scalar curvature flow on $S^n$–-perturbation theorem revisited, Invent. Math., 187 (2012), 395-506.  doi: 10.1007/s00222-011-0335-6.  Google Scholar

[11]

Y. H. ChenC. Liu and Y. Zheng, Existence results for the fractional Nirenberg problem, J. Funct. Anal., 270 (2016), 4043-4086.  doi: 10.1016/j.jfa.2016.03.013.  Google Scholar

[12]

Y. H. Chen and Y. Zheng, Peak solutions for the fractional Nirenberg problem, Nonlinear Anal., 122 (2015), 100-124.  doi: 10.1016/j.na.2015.04.002.  Google Scholar

[13]

H. Chtioui and W. Abdelhedi, On a fractional Nirenberg type problem on the $n$-dimensional sphere, Complex Var. Elliptic Equ., 62 (2017), 1015-1036.  doi: 10.1080/17476933.2016.1260557.  Google Scholar

[14]

H. Chtioui and W. Abdelhedi, On a fractional Nirenberg problem on $n$-dimensional spheres: existence and multiplicity results, Bull. Sci. Math., 140 (2016), 617-628.  doi: 10.1016/j.bulsci.2015.04.007.  Google Scholar

[15]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013), 346-369.  doi: 10.1016/j.aim.2013.03.011.  Google Scholar

[16]

P. DaskalopoulosY. Sire and J. L. Vázquez, Weak and smooth solutions for a fractional Yamabe flow: the case of general compact and locally conformally flat manifolds, Commun. Partial Differ. Equ., 42 (2017), 1481-1496.  doi: 10.1080/03605302.2017.1377230.  Google Scholar

[17]

J. F. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.  doi: 10.1007/BF01389071.  Google Scholar

[18] C. Fefferman and C. R. Graham, The Ambient Metric, Princeton Univ. Press, Princeton, NJ, 2012.   Google Scholar
[19]

M. González and J. Qing, Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, 6 (2013), 1535–1576. doi: 10.2140/apde.2013.6.1535.  Google Scholar

[20]

M. GonzálezR. Mazzeo and Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22 (2012), 845-863.  doi: 10.1007/s12220-011-9217-9.  Google Scholar

[21]

C. R. GrahamR. JenneL. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), 46 (1992), 557-565.  doi: 10.1112/jlms/s2-46.3.557.  Google Scholar

[22]

C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89-118.  doi: 10.1007/s00222-002-0268-1.  Google Scholar

[23]

P. T. Ho, Soliton to the fractional Yamabe flow, Nonlinear Anal., 139 (2016), 211-217.  doi: 10.1016/j.na.2016.02.026.  Google Scholar

[24]

P. T. Ho, Prescribed mean curvature equation on the unit ball in the presence of reflection or rotation symmetry, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 781-789.  doi: 10.1017/prm.2018.40.  Google Scholar

[25]

P. T. Ho, Prescribed Webster scalar curvature on $S^{2n+1}$ in the presence of reflection or rotation symmetry, Bull. Sci. Math., 140 (2016), 506-518.  doi: 10.1016/j.bulsci.2015.06.001.  Google Scholar

[26]

P. T. Ho, Prescribing $Q$-curvature on $S^n$ in the presence of symmetry, Commun. Pure Appl. Anal., 19 (2020), 715-722.  doi: 10.3934/cpaa.2020033.  Google Scholar

[27]

S. Y. Hsu, Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differ. Equ., 49 (2014), 307-321.  doi: 10.1007/s00526-012-0583-3.  Google Scholar

[28]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014) 1111–1171. doi: 10.4171/JEMS/456.  Google Scholar

[29]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, Part II: existence of solutions, Int. Math. Res. Not. IMRN, (2015) 1555–1589. doi: 10.1093/imrn/rnt260.  Google Scholar

[30]

T. Jin and J. Xiong, A fractional Yamabe flow and some applications, J. Reine Angew. Math., 696 (2014), 187-223.  doi: 10.1515/crelle-2012-0110.  Google Scholar

[31]

M. C. Leung and F. Zhou, Prescribed scalar curvature equation on $S^n$ in the presence of reflection or rotation symmetry, Proc. Amer. Math. Soc., 142 (2014), 1607-1619.  doi: 10.1090/S0002-9939-2014-11993-9.  Google Scholar

[32]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.   Google Scholar

[33]

C. Liu and Q. Ren, Infinitely many non-radial solutions for fractional Nirenberg problem, Calc. Var. Partial Differ. Equ., 56 (2017), 40 pp. doi: 10.1007/s00526-017-1141-9.  Google Scholar

[34]

C. Liu and Q. Ren, Multi-bump solutions for fractional Nirenberg problem, Nonlinear Anal., 171 (2018), 177-207.  doi: 10.1016/j.na.2018.02.001.  Google Scholar

[35]

Z. Liu, Concentration of solutions for the fractional Nirenberg problem, Commun. Pure Appl. Anal., 15 (2016), 563-576.  doi: 10.3934/cpaa.2016.15.563.  Google Scholar

[36]

L. Ma and V. Miquel, Remarks on scalar curvature of Yamabe solitons, Ann. Global Anal. Geom., 42 (2012), 195-205.  doi: 10.1007/s10455-011-9308-7.  Google Scholar

[37]

S. Maeta, Three-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor, Ann. Global Anal. Geom., 58 (2020), 227–237. doi: 10.1007/s10455-020-09722-9.  Google Scholar

[38]

R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., 75 (1987), 260-310.  doi: 10.1016/0022-1236(87)90097-8.  Google Scholar

[39]

J. Moser, On a nonlinear problem in differential geometry, Dynamical systems, (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, (1973), 273–280.  Google Scholar

[40]

P. Pavlov and S. Samko, A description of spaces $L^\alpha_p(S_{n-1})$ in terms of spherical hypersingular integrals (Russian), Soviet Math. Dokl., 29 (1984), 549-553.   Google Scholar

[41]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere, Calc. Var. Partial Differ. Equ., 4 (1996), 1-25.  doi: 10.1007/BF01322307.  Google Scholar

[42]

M. Struwe, A flow approach to Nirenberg's problem, Duke Math. J., 128 (2005), 19-64.  doi: 10.1215/S0012-7094-04-12812-X.  Google Scholar

[43]

J. C. Wei and X. Xu, On conformal deformations of metrics on $S^n$, J. Funct. Anal., 157 (1998), 292-325.  doi: 10.1006/jfan.1998.3271.  Google Scholar

show all references

References:
[1]

J. Case and S. Y. A. Chang, On fractional GJMS operators, Commun. Pure Appl. Math., 69 (2016), 1017-1061.   Google Scholar

[2]

H. Chan, Y. Sire and L. Sun, Convergence of the fractional Yamabe flow for a class of initial data, preprint, arXiv: 1809.05753v1. Google Scholar

[3]

S. Y. A. Chang and M. González, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.   Google Scholar

[4]

S. Y. A. ChangM. J. Gursky and P. C. Yang, The scalar curvature equation on 2-and 3-spheres, Calc. Var. Partial Differ. Equ., 1 (1993), 205-229.   Google Scholar

[5]

S. Y. A. Chang and P. C. Yang, A perturbation result in prescribing scalar curvature on $S^n$, Duke Math. J., 64 (1991), 27-69.  doi: 10.1215/S0012-7094-91-06402-1.  Google Scholar

[6]

S. Y. A. Chang and P. C. Yang, Conformal deformation of metrics on $S^2$, J. Differ. Geom., 27 (1988), 259-296.   Google Scholar

[7]

S. Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on $S^2$, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[8]

W. ChenC. Li and B. Ou, Classifications of solutions for an integral equation, Commun. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

X. Chen, P. T. Ho and J. Xiong, A fractional conformal curvature flow on the unit sphere, preprint, arXiv: 1906.08434. Google Scholar

[10]

X. Chen and X. Xu, The scalar curvature flow on $S^n$–-perturbation theorem revisited, Invent. Math., 187 (2012), 395-506.  doi: 10.1007/s00222-011-0335-6.  Google Scholar

[11]

Y. H. ChenC. Liu and Y. Zheng, Existence results for the fractional Nirenberg problem, J. Funct. Anal., 270 (2016), 4043-4086.  doi: 10.1016/j.jfa.2016.03.013.  Google Scholar

[12]

Y. H. Chen and Y. Zheng, Peak solutions for the fractional Nirenberg problem, Nonlinear Anal., 122 (2015), 100-124.  doi: 10.1016/j.na.2015.04.002.  Google Scholar

[13]

H. Chtioui and W. Abdelhedi, On a fractional Nirenberg type problem on the $n$-dimensional sphere, Complex Var. Elliptic Equ., 62 (2017), 1015-1036.  doi: 10.1080/17476933.2016.1260557.  Google Scholar

[14]

H. Chtioui and W. Abdelhedi, On a fractional Nirenberg problem on $n$-dimensional spheres: existence and multiplicity results, Bull. Sci. Math., 140 (2016), 617-628.  doi: 10.1016/j.bulsci.2015.04.007.  Google Scholar

[15]

P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Adv. Math., 240 (2013), 346-369.  doi: 10.1016/j.aim.2013.03.011.  Google Scholar

[16]

P. DaskalopoulosY. Sire and J. L. Vázquez, Weak and smooth solutions for a fractional Yamabe flow: the case of general compact and locally conformally flat manifolds, Commun. Partial Differ. Equ., 42 (2017), 1481-1496.  doi: 10.1080/03605302.2017.1377230.  Google Scholar

[17]

J. F. Escobar and R. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math., 86 (1986), 243-254.  doi: 10.1007/BF01389071.  Google Scholar

[18] C. Fefferman and C. R. Graham, The Ambient Metric, Princeton Univ. Press, Princeton, NJ, 2012.   Google Scholar
[19]

M. González and J. Qing, Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, 6 (2013), 1535–1576. doi: 10.2140/apde.2013.6.1535.  Google Scholar

[20]

M. GonzálezR. Mazzeo and Y. Sire, Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., 22 (2012), 845-863.  doi: 10.1007/s12220-011-9217-9.  Google Scholar

[21]

C. R. GrahamR. JenneL. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2), 46 (1992), 557-565.  doi: 10.1112/jlms/s2-46.3.557.  Google Scholar

[22]

C. R. Graham and M. Zworski, Scattering matrix in conformal geometry, Invent. Math., 152 (2003), 89-118.  doi: 10.1007/s00222-002-0268-1.  Google Scholar

[23]

P. T. Ho, Soliton to the fractional Yamabe flow, Nonlinear Anal., 139 (2016), 211-217.  doi: 10.1016/j.na.2016.02.026.  Google Scholar

[24]

P. T. Ho, Prescribed mean curvature equation on the unit ball in the presence of reflection or rotation symmetry, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 781-789.  doi: 10.1017/prm.2018.40.  Google Scholar

[25]

P. T. Ho, Prescribed Webster scalar curvature on $S^{2n+1}$ in the presence of reflection or rotation symmetry, Bull. Sci. Math., 140 (2016), 506-518.  doi: 10.1016/j.bulsci.2015.06.001.  Google Scholar

[26]

P. T. Ho, Prescribing $Q$-curvature on $S^n$ in the presence of symmetry, Commun. Pure Appl. Anal., 19 (2020), 715-722.  doi: 10.3934/cpaa.2020033.  Google Scholar

[27]

S. Y. Hsu, Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differ. Equ., 49 (2014), 307-321.  doi: 10.1007/s00526-012-0583-3.  Google Scholar

[28]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014) 1111–1171. doi: 10.4171/JEMS/456.  Google Scholar

[29]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, Part II: existence of solutions, Int. Math. Res. Not. IMRN, (2015) 1555–1589. doi: 10.1093/imrn/rnt260.  Google Scholar

[30]

T. Jin and J. Xiong, A fractional Yamabe flow and some applications, J. Reine Angew. Math., 696 (2014), 187-223.  doi: 10.1515/crelle-2012-0110.  Google Scholar

[31]

M. C. Leung and F. Zhou, Prescribed scalar curvature equation on $S^n$ in the presence of reflection or rotation symmetry, Proc. Amer. Math. Soc., 142 (2014), 1607-1619.  doi: 10.1090/S0002-9939-2014-11993-9.  Google Scholar

[32]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.   Google Scholar

[33]

C. Liu and Q. Ren, Infinitely many non-radial solutions for fractional Nirenberg problem, Calc. Var. Partial Differ. Equ., 56 (2017), 40 pp. doi: 10.1007/s00526-017-1141-9.  Google Scholar

[34]

C. Liu and Q. Ren, Multi-bump solutions for fractional Nirenberg problem, Nonlinear Anal., 171 (2018), 177-207.  doi: 10.1016/j.na.2018.02.001.  Google Scholar

[35]

Z. Liu, Concentration of solutions for the fractional Nirenberg problem, Commun. Pure Appl. Anal., 15 (2016), 563-576.  doi: 10.3934/cpaa.2016.15.563.  Google Scholar

[36]

L. Ma and V. Miquel, Remarks on scalar curvature of Yamabe solitons, Ann. Global Anal. Geom., 42 (2012), 195-205.  doi: 10.1007/s10455-011-9308-7.  Google Scholar

[37]

S. Maeta, Three-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor, Ann. Global Anal. Geom., 58 (2020), 227–237. doi: 10.1007/s10455-020-09722-9.  Google Scholar

[38]

R. Mazzeo and R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., 75 (1987), 260-310.  doi: 10.1016/0022-1236(87)90097-8.  Google Scholar

[39]

J. Moser, On a nonlinear problem in differential geometry, Dynamical systems, (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, (1973), 273–280.  Google Scholar

[40]

P. Pavlov and S. Samko, A description of spaces $L^\alpha_p(S_{n-1})$ in terms of spherical hypersingular integrals (Russian), Soviet Math. Dokl., 29 (1984), 549-553.   Google Scholar

[41]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere, Calc. Var. Partial Differ. Equ., 4 (1996), 1-25.  doi: 10.1007/BF01322307.  Google Scholar

[42]

M. Struwe, A flow approach to Nirenberg's problem, Duke Math. J., 128 (2005), 19-64.  doi: 10.1215/S0012-7094-04-12812-X.  Google Scholar

[43]

J. C. Wei and X. Xu, On conformal deformations of metrics on $S^n$, J. Funct. Anal., 157 (1998), 292-325.  doi: 10.1006/jfan.1998.3271.  Google Scholar

[1]

Qi S. Zhang. Nonlinear parabolic problems on manifolds, and a nonexistence result for the noncompact Yamabe problem. Electronic Research Announcements, 1997, 3: 45-51.

[2]

Guozhen Lu and Juncheng Wei. On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups. Electronic Research Announcements, 1997, 3: 83-89.

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[4]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[5]

Juan Carlos Fernández, Oscar Palmas, Jimmy Petean. Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2495-2514. doi: 10.3934/dcds.2020123

[6]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[7]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[8]

Mingqi Xiang, Giovanni Molica Bisci, Binlin Zhang. Variational analysis for nonlocal Yamabe-type systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 2069-2094. doi: 10.3934/dcdss.2020159

[9]

Isabel Flores. Singular solutions of the Brezis-Nirenberg problem in a ball. Communications on Pure & Applied Analysis, 2009, 8 (2) : 673-682. doi: 10.3934/cpaa.2009.8.673

[10]

Zheng-Chao Han, YanYan Li. On the local solvability of the Nirenberg problem on $\mathbb S^2$. Discrete & Continuous Dynamical Systems, 2010, 28 (2) : 607-615. doi: 10.3934/dcds.2010.28.607

[11]

L. Brandolini, M. Rigoli and A. G. Setti. On the existence of positive solutions of Yamabe-type equations on the Heisenberg group. Electronic Research Announcements, 1996, 2: 101-107.

[12]

Lok Ming Lui, Tsz Wai Wong, Wei Zeng, Xianfeng Gu, Paul M. Thompson, Tony F. Chan, Shing Tung Yau. Detection of shape deformities using Yamabe flow and Beltrami coefficients. Inverse Problems & Imaging, 2010, 4 (2) : 311-333. doi: 10.3934/ipi.2010.4.311

[13]

Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure & Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013

[14]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[15]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29 (3) : 2475-2488. doi: 10.3934/era.2020125

[16]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[17]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[18]

Nazih Abderrazzak Gadhi, Khadija Hamdaoui. Optimality results for a specific fractional problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020157

[19]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[20]

Tatiana Odzijewicz. Generalized fractional isoperimetric problem of several variables. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2617-2629. doi: 10.3934/dcdsb.2014.19.2617

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (48)
  • HTML views (137)
  • Cited by (0)

Other articles
by authors

[Back to Top]