Advanced Search
Article Contents
Article Contents

Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model

The author is supported by K. C. Wong Magna Fund in Ningbo University
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • The phenomena of concentration and cavitation for the Riemann problem of the Baer-Nunziato (BN) two-phase flow model has been investigated in this paper. By using the characteristic analysis method, the formation of $ \delta- $waves and vacuum states are obtained as the pressure for both phases vanish in the BN model. The solid contact wave is carefully dealt. The comparison with the solutions of pressureless two-phase model shows that, two shock waves tend to a $ \delta- $shock solution, and two rarefaction waves tend to a two contact discontinuity solution when the solid contact discontinuity is involved. Moreover, the detailed Riemann solutions for two-phase flow model are given as the double pressure parameters vanish. This may contribute to the design of numerical schemes in the future research.

    Mathematics Subject Classification: Primary: 35L65, 35B25, 35Q35, 35L67; Secondary: 35L50.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 4.1.  $[![]!]

    Figure 4.2.  $[![]!]

    Figure 4.3.  $[![]!]

    Figure 4.4.  $[![]!]

  • [1] N. Andrianov and G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., 64 (2004), 878-901.  doi: 10.1137/S0036139903424230.
    [2] N. Andrianov and G. Warnecke, The Riemann problem for the Baer-Nunziato two-phase flow model, J. Comput. Phys., 195 (2004), 434-464.  doi: 10.1016/j.jcp.2003.10.006.
    [3] M. R. Baer and J. W. Nunziato, A two-phase mixture theory for the deflagration-todetonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flows, 12 (1986), 861-889. 
    [4] T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics, Pitman Monographs, Longman Scientific and technica, 1989.
    [5] G. Q. Chen and H. Liu, Formation of $\delta$-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.
    [6] G. Q. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Phys. D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039.
    [7] P. Embid and M. Baer, Mathematical analysis of a two-phase continuum mixture theory, Continuum Mech. Thermodyn., 4 (1992), 279-312.  doi: 10.1007/BF01129333.
    [8] L. H. Guo, The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system, Commun. Pure Appl. Anal., 9 (2010), 431-458.  doi: 10.3934/cpaa.2010.9.431.
    [9] P. G. LeFloch and M. D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Commun. Math. Sci., 1 (2003), 763-797. 
    [10] J. Q. Li, Note on the compressible Euler equations with zero temperature, Appl. Math. Lett., 14 (2001), 519-523.  doi: 10.1016/S0893-9659(00)00187-7.
    [11] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150 (1999), 425-467.  doi: 10.1006/jcph.1999.6187.
    [12] R. Saurel and O. Lemetayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431 (2001), 239-271. 
    [13] C. Shen and M. Sun, Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model, J. Diff. Equ., 249 (2010), 3024-3051.  doi: 10.1016/j.jde.2010.09.004.
    [14] W. ShengG. Wang and G. Yin, Delta wave and vacuum state for generalized Chaplygin gas dynamics system as pressure vanishes, Nonlinear Anal., 22 (2015), 115-128.  doi: 10.1016/j.nonrwa.2014.08.007.
    [15] W. Sheng and T. Zhang, The Riemann problem for the transportation equations in gas dynamics, in: Mem. Amer. Math. Soc., AMS, Providence, 1999. doi: 10.1090/memo/0654.
    [16] W. Sheng and Q. Zhang, Interaction of the elementary waves of isentropic flow in a variable cross-section duct, Commun. Math. Sci., 16 (2008), 1659-1684.  doi: 10.4310/CMS.2018.v16.n6.a8.
    [17] J. Smoller, Shock waves and Reaction-Diffusion Equations, 2nd ed., Sringer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0.
    [18] D. TanT. Zhang and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differ. Equ., 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093.
    [19] M. D. Thanh, The Riemann problem for a nonisentropic fluid in a nozzle with discontinuous cross-sectional area, SIAM J. Appl. Math., 69 (2009), 1501-1519.  doi: 10.1137/080724095.
    [20] G. D. Wang, The Riemann problem for one dimensional generalized Chaplygin gas dynamics, J. Math. Anal. Appl., 403 (2013), 434-450.  doi: 10.1016/j.jmaa.2013.02.026.
    [21] H. Yang and J. Wang, Delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations for modified Chaplygin gas., J. Math. Anal. Appl., 413 (2014), 800-820.  doi: 10.1016/j.jmaa.2013.12.025.
    [22] G. Yin and W. Sheng, Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations, Chin. Ann. Math. Ser. B, 29 (2008), 611-622.  doi: 10.1007/s11401-008-0009-x.
  • 加载中



Article Metrics

HTML views(494) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint