\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Admissible function spaces for weighted Sobolev inequalities

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Let $ k,N\in \mathbb{N} $ with $ 1\le k\le N $ and let $ \Omega = \Omega_1 \times \Omega_2 $ be an open set in $ \mathbb{R}^k \times \mathbb{R}^{N-k} $. For $ p\in (1,\infty) $ and $ q \in (0,\infty), $ we consider the following weighted Sobolev type inequality:

    $\begin{align} \int_{\Omega} |g_1(y)||g_2(z)| |u(y,z)|^q \, {\rm d}y {\rm d}z \leq C \left( \int_{\Omega} | \nabla u(y,z) |^p \, {\rm d}y {\rm d}z \right)^{\frac{q}{p}}, \quad \forall \, u \in \mathcal{C}^1_c(\Omega), \\(0.1)\end{align}$

    for some $ C>0 $. Depending on the values of $ N,k,p,q $ we have identified various pairs of Lorentz spaces, Lorentz-Zygmund spaces and weighted Lebesgue spaces for $ (g_1, g_2) $ so that (0.1) holds. Furthermore, we give a sufficient condition on $ g_1,g_2 $ so that the best constant in (0.1) is attained in the Beppo-Levi space $ \mathcal{D}^{1,p}_0(\Omega) $-the completion of $ \mathcal{C}^1_c(\Omega) $ with respect to $\|\nabla u\|_{L p(\Omega)}$.

    Mathematics Subject Classification: Primary: 35A23, 46E30, 46E35, 47J30.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math. (2), 128 (1988), 385-398.  doi: 10.2307/1971445.
    [2] Adimurthi, N. Chaudhuri and M. Ramaswamy., An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 130 (2002), 489-505.  doi: 10.1090/S0002-9939-01-06132-9.
    [3] W. Allegretto., Principal eigenvalues for indefinite-weight elliptic problems in ${{{\mathbb R}}}^n$, Proc. Amer. Math. Soc., 116 (1992), 701-706.  doi: 10.2307/2159436.
    [4] W. Allegretto and Y. X. Huang, Eigenvalues of the indefinite-weight $p$-Laplacian in weighted spaces, Funkcial. Ekvac., 38 (1995), 233-242. 
    [5] T. V. Anoop., A note on generalized Hardy-Sobolev inequalities, Int. J. Anal., pages Art. ID 784398, 9, 2013. doi: 10.1155/2013/784398.
    [6] T. V. Anoop and U. Das, The compactness and the concentration compactness via $p$-capacity, Annali di Matematica Pura ed Applicata (1923 -), 2021. doi: 10.1007/s10231-021-01098-2.
    [7] T. V. AnoopU. Das and A. Sarkar, On the generalized Hardy-Rellich inequalities, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 897-919.  doi: 10.1017/prm.2018.128.
    [8] T. V. AnoopP. Drábek and S. Sasi, Weighted quasilinear eigenvalue problems in exterior domains, Calc. Var. Partial Differ. Equ., 53 (2015), 961-975.  doi: 10.1007/s00526-014-0773-2.
    [9] T. V. AnoopM. Lucia and M. Ramaswamy, Eigenvalue problems with weights in Lorentz spaces, Calc. Var. Partial Differ. Equ., 36 (2009), 355-376.  doi: 10.1007/s00526-009-0232-7.
    [10] M. Badiale and E. Serra, Critical nonlinear elliptic equations with singularities and cylindrical symmetry, Rev. Mat. Iberoam., 20 (2004), 33-66.  doi: 10.4171/RMI/379.
    [11] M. Badiale and G. Tarantello, A Sobolev-{H}ardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259-293.  doi: 10.1007/s002050200201.
    [12] C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissertationes Math. (Rozprawy Mat.), 175: 67, 1980.
    [13] G. BertinDynamics of Galaxies, Cambridge University Press, Cambridge, 2000. 
    [14] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull., 21 (1978), 405-408.  doi: 10.4153/CMB-1978-071-7.
    [15] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.
    [16] H. Brezis and J. L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469. 
    [17] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Partial Differ. Equ., 5 (1980), 773-789.  doi: 10.1080/03605308008820154.
    [18] L. CaffarelliR. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. 
    [19] R. E. Castillo and H. Rafeiro, An introductory course in Lebesgue spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. doi: 10.1007/978-3-319-30034-4.
    [20] S. Chanillo and R. L. Wheeden, $L^p$-estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, Commun. Partial Differ. Equ., 10 (1985), 1077-1116.  doi: 10.1080/03605308508820401.
    [21] L. Ciotti, Dynamical models in astrophysics, Lecture Notes, Scuola Normale Superiore, Pisa, 2001.
    [22] D. E. Edmunds and W. D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-07731-3.
    [23] D. E. Edmunds and H. Triebel, Sharp Sobolev embeddings and related Hardy inequalities: the critical case, Math. Nachr., 207 (1999), 79-92.  doi: 10.1002/mana.1999.3212070105.
    [24] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 129-206.  doi: 10.1090/S0273-0979-1983-15154-6.
    [25] C. Fefferman and D. H. Phong, Lower bounds for Schrödinger equations, In Conference on Partial Differential Equations (Saint Jean de Monts, 1982), pages Conf. No. 7, 7. Soc. Math. France, Paris, 1982.
    [26] S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233.  doi: 10.1006/jfan.2001.3900.
    [27] G. B. Folland, Real Analysis, Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition, 1999.
    [28] N. Ghoussoub and A. Moradifam, Bessel pairs and optimal Hardy and Hardy-Rellich inequalities, Math. Ann., 349 (2011), 1-57.  doi: 10.1007/s00208-010-0510-x.
    [29] N. Ghoussoub and A. Moradifam, Functional inequalities: new perspectives and new applications, volume 187 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2013. doi: 10.1090/surv/187.
    [30] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.
    [31] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand., 45 (1979), 77-102.  doi: 10.7146/math.scand.a-11827.
    [32] G. H. HardyJ. E. Littlewood and  G. PólyaInequalities, Cambridge, at the University Press, 1952. 
    [33] L. Hörmander and J. L. Lions, Sur la complétion par rapport à une intégrale de Dirichlet, Math. Scand., 4 (1956), 259-270.  doi: 10.7146/math.scand.a-10474.
    [34] R. A. Hunt, On $L(p, q)$ spaces, Enseign. Math. (2), 12: 249–276, 1966.
    [35] B. KawohlM. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differ. Equ., 12 (2007), 407-434. 
    [36] R. Kerman and E. Sawyer, Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms, and Carleson measures, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 112-116.  doi: 10.1090/S0273-0979-1985-15306-6.
    [37] A. Kufner, L. Maligranda and L. E. Persson, The Hardy inequality, Vydavatelský Servis, Plzeň, 2007.
    [38] N. Lam, G. Lu and L. Zhang, Factorizations and Hardy's type identities and inequalities on upper half spaces, Calc. Var. Partial Differ. Equ., 58 (2019), . doi: 10.1007/s00526-019-1633-x.
    [39] N. Lam, G. Lu and L. Zhang, Geometric Hardy's inequalities with general distance functions., J. Funct. Anal., 279(8): 108673, 35, 2020. doi: 10.1016/j.jfa.2020.108673.
    [40] J. Lehrbäck and A. V. Vähäkangas, In between the inequalities of Sobolev and Hardy, J. Funct. Anal., 271 (2016), 330-364.  doi: 10.1016/j.jfa.2016.04.028.
    [41] Y. Li, On the positive solutions of the Matukuma equation, Duke Math. J., 70 (1993), 575-589.  doi: 10.1215/S0012-7094-93-07012-3.
    [42] Y. Li and W. M. Ni., On conformal scalar curvature equations in Rn, Duke Math. J., 57 (1988), 895-924.  doi: 10.1215/S0012-7094-88-05740-7.
    [43] R. L. Long and F. S. Nie, Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators, In Harmonic analysis (Tianjin, 1988), volume 1494 of Lecture Notes in Math., pages 131–141. Springer, Berlin, 1991. doi: 10.1007/BFb0087765.
    [44] G. G. Lorentz, Some new functional spaces, Ann. Math. (2), 51 (1950), 37-55.  doi: 10.2307/1969496.
    [45] F. Mamedov and Y. Shukurov, A Sawyer-type sufficient condition for the weighted Poincaré inequality, Positivity, 22 (2018), 687-699.  doi: 10.1007/s11117-017-0537-2.
    [46] A. Manes and A. M. Micheletti., Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 7 (1973), 285-301. 
    [47] V. G. Maz'ja, Sobolev Spaces, Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-09922-3.
    [48] V. Maz'ya, Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces, Contemp. Math., 338 (2003), 307-340.  doi: 10.1090/conm/338/06078.
    [49] B. Muckenhoupt, Hardy's inequality with weights, Studia Math., 44 (1972), 31-38.  doi: 10.4064/sm-44-1-31-38.
    [50] E. S. Noussair and C. A. Swanson, Solutions of Matukuma's equation with finite total mass, Indiana Univ. Math. J., 38 (1989), 557-561.  doi: 10.1512/iumj.1989.38.38026.
    [51] R. O'Neil, Convolution operators and $L(p, q)$ spaces, Duke Math. J., 30 (1963), 129-142. 
    [52] C. Pérez., Two weighted norm inequalities for Riesz potentials and uniform $L^p$-weighted Sobolev inequalities, Indiana Univ. Math. J., 39(1): 31–44, 1990. doi: 10.1512/iumj.1990.39.39004.
    [53] G. Pólya and  G. SzegöIsoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27. Princeton University Press, Princeton, N. J., 1951. 
    [54] K. Sandeep, On a noncompact minimization problem of Hardy-Sobolev type, Adv. Nonlinear Stud., 2 (2002), 81-91.  doi: 10.1515/ans-2002-0106.
    [55] E. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc., 308 (1988), 533-545.  doi: 10.2307/2001090.
    [56] E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874.  doi: 10.2307/2374799.
    [57] G. J. Sinnamon, Weighted Hardy and Opial-type inequalities, J. Math. Anal. Appl., 160 (1991), 434-445.  doi: 10.1016/0022-247X(91)90316-R.
    [58] A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight, Studia Math., 135 (1999), 191-201. 
    [59] H. Tanaka, Two-weight norm inequalities for product fractional integral operators, Bull. Sci. Math., 166: 102940, 18, 2021. doi: 10.1016/j.bulsci.2020.102940.
    [60] H. Triebel, Higher Analysis, Hochschulbücher für Mathematik. [University Books for Mathematics]. Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992.
    [61] N. Visciglia, A note about the generalized Hardy-Sobolev inequality with potential in $L^{p, d}({{\mathbb R}}^n)$, Calc. Var. Partial Differential Equations, 24(2): 167–184, 2005. doi: 10.1007/s00526-004-0319-0.
    [62] E. Yanagida and S. Yotsutani, Global structure of positive solutions to equations of Matukuma type, Arch. Rational Mech. Anal., 134(3): 199–226, 1996. doi: 10.1007/BF00379534.
    [63] L. S. Yu, Nonlinear $p$-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc., 115(4): 1037–1045, 1992. doi: 10.2307/2159352.
  • 加载中
SHARE

Article Metrics

HTML views(2756) PDF downloads(175) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return