• Previous Article
    Regularity and existence of positive solutions for a fractional system
  • CPAA Home
  • This Issue
  • Next Article
    Singular limit for reactive transport through a thin heterogeneous layer including a nonlinear diffusion coefficient
doi: 10.3934/cpaa.2021108
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Ground state solution of critical Schrödinger equation with singular potential

School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui 232001, China

* Corresponding author

Received  June 2020 Revised  May 2021 Early access June 2021

Fund Project: Y. Su is supported by the Key Program of University Natural Science Research Fund of Anhui Province (KJ2020A0292)

In this paper, we consider the following Schrödinger equation with singular potential:
$ \begin{equation*} \begin{aligned} -\Delta u + V(|x|)u = f(u),\ \, x\in \mathbb{R}^{N}, \end{aligned} \end{equation*} $
where
$ N\geqslant 3 $
,
$ V $
is a singular potential with parameter
$ \alpha\in(0,2)\cup(2,\infty) $
, the nonlinearity
$ f $
involving critical exponent. First, by using the refined Sobolev inequality, we establish a Lions-type theorem. Second, applying Lions-type theorem and variational methods, we show the existence of ground state solution for above equation. Our result partially extends the results in Badiale-Rolando [Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 17 (2006)], and Su-Wang-Willem [Commun. Contemp. Math. 9 (2007)].
Citation: Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure & Applied Analysis, doi: 10.3934/cpaa.2021108
References:
[1]

M. Badiale and S. Rolando, A note on nonlinear elliptic problems with singular potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 17 (2006), 1-13.  doi: 10.4171/RLM/450.  Google Scholar

[2]

M. BadialeV. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381.  doi: 10.4171/JEMS/83.  Google Scholar

[3]

M. Badiale, M. Guida and S. Rolando, Elliptic equations with decaying cylindrical potentials and power-type nonlinearities, Adv. Differ. Equ., 12 (2007), 1321-1362. doi: euclid.ade/1355867405.  Google Scholar

[4]

M. Badiale, M. Guida and S. Rolando, A nonexistence result for a nonlinear elliptic equation with singular and decaying potential, Commun. Contemp. Math., 17 (2015), 21 pp. doi: 10.1142/S0219199714500242.  Google Scholar

[5]

M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions Part Ⅱ: Existence, Nonlinear Differ. Equ. Appl., 23 (2016), 34 pp. doi: 10.1007/s00030-016-0411-0.  Google Scholar

[6]

M. BadialeM. Guida and S. Rolando, Compactness and existence results for the p-Laplace equations, J. Math. Anal. Appl., 451 (2017), 345-370.  doi: 10.1016/j.jmaa.2017.02.011.  Google Scholar

[7]

M. BadialeL. Pisani and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, Nonlinear Differ. Equ. Appl., 18 (2011), 369-405.  doi: 10.1007/s00030-011-0100-y.  Google Scholar

[8]

M. BadialeS. Greco and S. Rolando, Radial solutions of a biharmonic equation with vanishing or singular radial potentials, Nonlinear Appl., 185 (2019), 97-122.  doi: 10.1016/j.na.2019.01.011.  Google Scholar

[9]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer, Cham, 2014.  Google Scholar

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[11]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[12]

F. Catrina, Nonexistence of positive radial solutions for a problem with singular potential, Adv. Nonlinear Anal., 3 (2014), 1-13.  doi: 10.1515/anona-2013-0023.  Google Scholar

[13]

P. C. CarriãoR. Demarque and O. H. Miyagaki, Nonlinear biharmonic problems with singular potentials, Commun. Pure Appl. Anal., 13 (2014), 2141-2154.  doi: 10.3934/cpaa.2014.13.2141.  Google Scholar

[14]

M. Conti, S. Crotti and D. Pardo, On the existence of positive solutions for a class of singular elliptic equations, Adv. Differ. Equ., 3 (1998), 111-132. doi: euclid.ade/1366399907.  Google Scholar

[15]

R. Demarque and O. H. Miyagaki, Radial solutions of inhomogeneous fourth order elliptic equations and weighted sobolev embeddings, Adv. Nonlinear Anal., 4 (2015), 135-151.  doi: 10.1515/anona-2014-0041.  Google Scholar

[16]

P. C. Fife, Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math. Soc., 84 (1978), 693-726.  doi: 10.1090/S0002-9904-1978-14502-9.  Google Scholar

[17]

R. FilippucciP. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 50 (2014), 156-177.  doi: 10.1016/j.matpur.2008.09.008.  Google Scholar

[18]

W. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.  doi: 10.1512/iumj.1982.31.31056.  Google Scholar

[19]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[20]

S. Rolando, Multiple nonradial solutions for a nonlinear elliptic problem with singular and decaying radial potential, Adv. Nonlinear Anal., 8 (2019), 885-901.  doi: 10.1515/anona-2017-0177.  Google Scholar

[21]

J. Su and R. Tian, Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations, Commun. Pure Appl. Anal., 9 (2010), 885-904.  doi: 10.3934/cpaa.2010.9.885.  Google Scholar

[22]

J. SuZ. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying potentials, Commun. Contemp. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.  Google Scholar

[23]

J. SuZ. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.  doi: 10.1016/j.jde.2007.03.018.  Google Scholar

[24]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differ. Equ., 1 (1996), 241-264. doi: euclid.ade/1366896239.  Google Scholar

[25]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51 (1984), 126-150.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[26]

C. Vincent and S. Phatak, Accurate momentum-space method for scattering by nuclear and Coulomb potentials, Phys. Rev., 10 (1974), 391-394.   Google Scholar

[27]

J. L. Vàzquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[28]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001.  Google Scholar

show all references

References:
[1]

M. Badiale and S. Rolando, A note on nonlinear elliptic problems with singular potentials, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 17 (2006), 1-13.  doi: 10.4171/RLM/450.  Google Scholar

[2]

M. BadialeV. Benci and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381.  doi: 10.4171/JEMS/83.  Google Scholar

[3]

M. Badiale, M. Guida and S. Rolando, Elliptic equations with decaying cylindrical potentials and power-type nonlinearities, Adv. Differ. Equ., 12 (2007), 1321-1362. doi: euclid.ade/1355867405.  Google Scholar

[4]

M. Badiale, M. Guida and S. Rolando, A nonexistence result for a nonlinear elliptic equation with singular and decaying potential, Commun. Contemp. Math., 17 (2015), 21 pp. doi: 10.1142/S0219199714500242.  Google Scholar

[5]

M. Badiale, M. Guida and S. Rolando, Compactness and existence results in weighted Sobolev spaces of radial functions Part Ⅱ: Existence, Nonlinear Differ. Equ. Appl., 23 (2016), 34 pp. doi: 10.1007/s00030-016-0411-0.  Google Scholar

[6]

M. BadialeM. Guida and S. Rolando, Compactness and existence results for the p-Laplace equations, J. Math. Anal. Appl., 451 (2017), 345-370.  doi: 10.1016/j.jmaa.2017.02.011.  Google Scholar

[7]

M. BadialeL. Pisani and S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, Nonlinear Differ. Equ. Appl., 18 (2011), 369-405.  doi: 10.1007/s00030-011-0100-y.  Google Scholar

[8]

M. BadialeS. Greco and S. Rolando, Radial solutions of a biharmonic equation with vanishing or singular radial potentials, Nonlinear Appl., 185 (2019), 97-122.  doi: 10.1016/j.na.2019.01.011.  Google Scholar

[9]

V. Benci and D. Fortunato, Variational Methods in Nonlinear Field Equations, Springer, Cham, 2014.  Google Scholar

[10]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[11]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.  Google Scholar

[12]

F. Catrina, Nonexistence of positive radial solutions for a problem with singular potential, Adv. Nonlinear Anal., 3 (2014), 1-13.  doi: 10.1515/anona-2013-0023.  Google Scholar

[13]

P. C. CarriãoR. Demarque and O. H. Miyagaki, Nonlinear biharmonic problems with singular potentials, Commun. Pure Appl. Anal., 13 (2014), 2141-2154.  doi: 10.3934/cpaa.2014.13.2141.  Google Scholar

[14]

M. Conti, S. Crotti and D. Pardo, On the existence of positive solutions for a class of singular elliptic equations, Adv. Differ. Equ., 3 (1998), 111-132. doi: euclid.ade/1366399907.  Google Scholar

[15]

R. Demarque and O. H. Miyagaki, Radial solutions of inhomogeneous fourth order elliptic equations and weighted sobolev embeddings, Adv. Nonlinear Anal., 4 (2015), 135-151.  doi: 10.1515/anona-2014-0041.  Google Scholar

[16]

P. C. Fife, Asymptotic states for equations of reaction and diffusion, Bull. Amer. Math. Soc., 84 (1978), 693-726.  doi: 10.1090/S0002-9904-1978-14502-9.  Google Scholar

[17]

R. FilippucciP. Pucci and F. Robert, On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 50 (2014), 156-177.  doi: 10.1016/j.matpur.2008.09.008.  Google Scholar

[18]

W. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J., 31 (1982), 801-807.  doi: 10.1512/iumj.1982.31.31056.  Google Scholar

[19]

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.  Google Scholar

[20]

S. Rolando, Multiple nonradial solutions for a nonlinear elliptic problem with singular and decaying radial potential, Adv. Nonlinear Anal., 8 (2019), 885-901.  doi: 10.1515/anona-2017-0177.  Google Scholar

[21]

J. Su and R. Tian, Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations, Commun. Pure Appl. Anal., 9 (2010), 885-904.  doi: 10.3934/cpaa.2010.9.885.  Google Scholar

[22]

J. SuZ. Wang and M. Willem, Nonlinear Schrödinger equations with unbounded and decaying potentials, Commun. Contemp. Math., 9 (2007), 571-583.  doi: 10.1142/S021919970700254X.  Google Scholar

[23]

J. SuZ. Wang and M. Willem, Weighted Sobolev embedding with unbounded and decaying radial potentials, J. Differ. Equ., 238 (2007), 201-219.  doi: 10.1016/j.jde.2007.03.018.  Google Scholar

[24]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differ. Equ., 1 (1996), 241-264. doi: euclid.ade/1366896239.  Google Scholar

[25]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equ., 51 (1984), 126-150.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[26]

C. Vincent and S. Phatak, Accurate momentum-space method for scattering by nuclear and Coulomb potentials, Phys. Rev., 10 (1974), 391-394.   Google Scholar

[27]

J. L. Vàzquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar

[28]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[3]

Wenmin Gong, Guangcun Lu. On Dirac equation with a potential and critical Sobolev exponent. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2231-2263. doi: 10.3934/cpaa.2015.14.2231

[4]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[5]

Yuxia Guo, Zhongwei Tang. Multi-bump solutions for Schrödinger equation involving critical growth and potential wells. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3393-3415. doi: 10.3934/dcds.2015.35.3393

[6]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[7]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[8]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[9]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[10]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[11]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[12]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[13]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, , () : -. doi: 10.3934/era.2021047

[14]

Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827

[15]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[16]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[17]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021111

[18]

Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016

[19]

Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165

[20]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (70)
  • HTML views (114)
  • Cited by (0)

Other articles
by authors

[Back to Top]